Anhang 3: Messbericht BURGHOF

Messbericht - Deponie BURGHOF -

Projekt - Nr.: HE001-04.2 (Darmstadt, Kerntechnische Beratung)

Auftraggeber: Ökoinstitut e.V.

Herr Christian Küppers

Rheinstraße 95 64295 Darmstadt

Verfasser: NCC Nuclear Control & Consulting GmbH

Hinter dem Turme 24 38114 Braunschweig

Bearbeiter: Dr. Rainer Gellermann (Dipl. Phys.)

Christian Ahrens (MSc. Geoökologe)

Abteilungsleiter Radioökologie / Strahlenschutz

Datum: Braunschweig, 15.11.2016

Inhaltsverzeichnis

Abbildungsverzeichnis					
Tabeller	nverzeichnis	3			
Anlagen	nverzeichnis	3			
1	Anlass und Aufgabenstellung	4			
2	Eingesetzte Messgeräte	4			
3	Messungen der Ortsdosisleistung	4			
3.1	Untersuchungsaufgabe und Durchführung	4			
3.2	Messergebnisse	5			
4	Messung von Gammaspektren	5			
4.1	Messergebnisse	8			
5	Untersuchung von Bodenproben	10			
5.1	Untersuchungsaufgabe und Durchführung	10			
5.2	Messergebnisse	11			
6	Messungen an Sickerwasserproben	13			
6.1	Untersuchungsaufgabe und Durchführung	13			
6.2	Messergebnisse	13			
7	Quellen	16			
Abbil	dungsverzeichnis				
Abbildun	ng 4-1: Gammaspektrometer mit Stativ zur Einstellugn einer definierte	n Messhöhe von 1 m 6			
Abbildun	ng 4-2: Gemessene Gammaspektren der Ablagerungsflächen (#150 Standortes Boden NO (#149) nach Abzug des Referenzbornstaß, Boden SW (RefBod).	oden Gammaspektrums			
Abbildun	ng 5-1: Bodenprofil am Standort Boden NO_2 bis 30 cm Tiefe aus Probenmaterial entnommen wurde				

Tabellenverzeichnis

Tabelle 3-1:	Zusammenfassung der Raster-ODL-Messungen auf der Deponie BURGHOF5
Tabelle 4-1:	Datengrundlagen und Auswertungen von Peak-Summen (PS)7
Tabelle 4-2:	Ergebnisse der Spektrenauswertung – Natürliche Radionuklide
Tabelle 4-3:	Ergebnisse der Spektrenauswertung – Indikatornuklide Cs-137, Co-60
Tabelle 5-1:	Ergebnisse der gammaspektrometrischen Untersuchung an Feststoffproben [Bq/g], Bodenprofil am Standort Boden NO_2 (vgl. Anlage 2.1)11
Tabelle 5-2:	Berechnung der ODL aus den an Laborproben bestimmten spezifischen Aktivitäten für den Bodenstandort im Nordosten der Deponie (Boden NO_2)12
Tabelle 6-1:	Sickerwasserproben mit Zuordnung der jeweiligen Deponiebereiche
Tabelle 6-2:	Ergebnisse der Sickerwasser- und Drainagewasseruntersuchung BURGHOF in [Bq/l]14
Tabelle 6-3	Werte zur Beurteilung von Radionukliden im Wasser

Anlagenverzeichnis

Anlage 1:	Tabellen, Skizzen und Nachweise zu ODL-Messungen
Anlage 1.1:	Unterlagen zum Messvergleich des Bundesamtes für Strahlenschutz
Anlage 1.2:	ODL-Messungen auf der Deponie BURGHOF
Anlage 1.3:	ODL-Messungen an Bodenflächen BURGHOF
Anlage 2:	Planunterlagen (durch AVL zur Verfügung gestellt)
Anlage 2.1:	Lageplan der Deponie BURGHOF mit verzeichneten Messpunkten
Anlage 2.2:	Leitungsnetzpläne der Sickerwasserdrainagen und -sammler der Deponie BURGHOF
Anlage 3:	Protokolle der Bodenuntersuchungen und der gammaspektrometrischen Felduntersu-
	chungen
Anlage 3.1:	Protokoll der bodenkundlichen Untersuchung
Anlage 3.2:	Auswertung der gammaspektrometrischen Felduntersuchungen
Anlage 4:	Prüfberichte Laboruntersuchungen
Anlage 4.1:	Prüfbericht 161019-01 vom 02.11.2016, IAF Radioökologie, Feststoffproben
Anlage 4.2:	Prüfbericht 2845.1Rev1 vom 14.11.2016, VKTA Rossendorf, Sickerwasser- und Drai-
	nage-Wasserproben

1 Anlass und Aufgabenstellung

Auf der Deponie BURGHOF, betrieben von der Abfallverwertungsgesellschaft Ludwigsburg mbH (AVL) wurden in den Jahren von 2007 bis 2015 zielgerichtet freigemessene Abfälle aus dem Rückbau des früheren Kernforschungszentrums Karlsruhe abgelagert. Im Zusammenhang mit der diesbezüglichen kommunalpolitischen Diskussion sollen durch Messungen die Auswirkungen dieser Ablagerungen auf das Wohl der Allgemeinheit am jeweiligen Deponiestandort ermittelt werden. NCC wurde dazu als Nachauftragnehmer des Öko-Instituts e. V. mit der Vorbereitung und Durchführung von Messungen beauftragt.

Die messtechnischen Aufgaben wurden im Vorfeld abgestimmt und im Ergebnis wurde ein Messprogramm konzipiert. Die Messungen und Probenahmen für messtechnische Laboruntersuchungen wurden am 12.10.2016 auf der Deponie BURGHOF durchgeführt. Im Folgenden werden sowohl die Probenahmen und messtechnischen Untersuchungen Vor-Ort als auch die Ergebnisse der Laboranalytik aufgeführt und ausgewertet.

2 Eingesetzte Messgeräte

Messungen der Umgebungs-Äquivalentdosisleistung (Ortsdosisleistung H*(10), ODL) wurden mit dem Dosisleistungsmessgerät 6150 AD6/E (Ser.-Nr.: 82989) mit Sonde 6150 AD-b/E (Ser.-Nr.: 133613) (Hersteller Automess GmbH) ermittelt. Das Messgerät ist für den Niedrigdosisbereich kalibriert und wird durch regelmäßige Kontrollmessungen im Messvergleich des Bundesamtes für Strahlenschutz (BfS) überprüft (s. Anlage 1.1)

Die In-Situ-Gammaspektrometrie wurde mittels tragbarem Gammaspektrometer RIIDEye X-G (Ser.-Nr.: 10392, Hersteller: Thermo Scientific), das mit einem 2x2" Nal-Detektor ausgestattet ist, ausgeführt. Das Gerät enthält einen internen K-40 Kalibrierstrahler zur Energielinienkalibrierung. Das RIIDEye verfügt über eine Datenschnittstelle, über die die Messdaten aus dem Gerät ausgelesen werden können.

3 Messungen der Ortsdosisleistung

3.1 Untersuchungsaufgabe und Durchführung

Untersuchungsaufgabe It. Messkonzept:

ODL-Messung an ausgewählten Referenzpunkten auf dem Abfallkörper. Vor-Ort-konkretisierte Zielstellung:

Prüfung des Strahlungsfeldes auf überdeckten Ablagerungsflächen, auf denen Freigabeabfälle ("Rückbau Abfälle") eingebaut sind. Die Koordinaten dieser Flächen wurden im Vorfeld von einem durch AVL beauftragten Vermessungsbüro (Geoplana) eingemessen (Absteckprotokoll s. Anlage 2.1).

Durchführung:

Zur Ermittlung der Ortsdosisleistung (ODL) wurden im Bereich der Deponie BURGHOF die überdeckten Ablagerungsflächen mit ODL-Messungen in einem regelmäßigen Raster kartiert (Rasterlänge 4 m x 4 m, Messhöhe ca. 1 m).

Im Nordosten (Boden NO) und im Südwesten (Boden SW) der Deponie außerhalb der Ablagerungsflächen wurden zwei Bodenflächen kartiert (Raster 4 m x 4 m, Messhöhe ca. 1 m), die nach Angaben der AVL als gewachsener Boden oder umgelagerter gewachsener Boden angesehen werden können.

3.2 Messergebnisse

Die Messprotokolle der ODL-Messungen sind in

- Anlage 1.2: Messungen auf der Deponie
- Anlage 1.3: Messungen im Bereich der Bodenflächen

aufgeführt. Die Messergebnisse werden in Nanosievert je Stunde (nSv/h) angegeben.

Aus diesen Daten ergeben sich die in Tabelle 3-1 aufgeführten statistischen Kenngrößen.

Tabelle 3-1: Zusammenfassung der Raster-ODL-Messungen auf der Deponie BURGHOF.

Ort der Messung	Anzahl	Mindestwert [nSv/h]	Maximalwert [nSv/h]	Mittelwert [nSv/h]	
Mess	ungen auf dem	Abfallkörper der [Deponie		
BH AblPkt. 1 (1304325)	39	68	89	77	
BH AblPkt. 2 (1386057)	24	74	105	86	
BH AblPkt. 3 (1383420)	31	88	115	101	
Messungen auf Bodenflächen					
BH Boden Nordost	38	103	128	119	
BH Boden Südwest	29	80	152	123	

Insgesamt liegen die Messwerte auf der Deponie Burghof unterhalb der natürlicherweise vorliegenden Hintergrundstrahlung des umgebenden Bodenmaterials.

Natürliche Materialien wie Mergel aus Hamberg, Gleisschotter und der im Bereich der Deponie BURGHOF anstehende Mergel, die im Deponiebau verwendet werden, wurden ebenfalls vermessen (s. Anlage 1.2). Das auf der Deponie BURGHOF eingebrachte Material aus Hamberg sowie der Gleisschotter liegen mit 120 bis 150 nSv/h unterhalb der natürlicherweise im Deponiebereich vorliegenden Ortsdosisleistung von 150 – 190 nSv/h am anstehenden Mergel.

Durch die auf den Ablagerungsflächen durchgeführten ODL-Messungen konnte keine erhöhte Radioaktivität nachgewiesen werden.

4 Messung von Gammaspektren

Untersuchungsaufgabe It. Messkonzept:

In-Situ-Gamma-Spektrometrie und ODL-Messung an ausgewählten Referenzpunkten auf dem Abfall-körper. Abschätzung der Aktivität nach UNSCEAR-Formel. Prüfung auf künstliche Radionuklide (Cs-137).

Durchführung

Zur In-Situ-Gammaspektrometrie wurde das Messgerät RIIDEye mit Hilfe einer Stativeinrichtung so aufgestellt, dass der Detektor in einer Höhe von 1 m über dem Boden positioniert war (Abbildung 4-1). Als Messort wurde jeweils eine möglichst ebene Fläche im direkten Umfeld der durch Geoplana eingemessenen Punkte gewählt. Dadurch wurde eine nahezu einheitliche Geometrie der Messungen sichergestellt. In Begleitung von Mitarbeitern der AVL wurden die jeweiligen Messorte aufgesucht und das Gammaspektrometer wurde am Standort eingerichtet. Die Messung wurde mit einer voreingestellten Messzeit von 30 Min. (1800 Sek.) gestartet. Die Messdaten wurden im Gerätespeicher abgelegt und im Anschluss an den Messtag aus dem Datenspeicher ausgelesen. Die exakten Messpunkte der Gammaspektrometrie wurden nach der durchgeführten Messung verpflockt und im Nachgang erneut durch das Vermessungsbüro Geoplana eingemessen (Anlage 2.1).

Abbildung 4-1: Gammaspektrometer mit Stativ zur Einstellugn einer definierten Messhöhe von 1 m.

Die Auswertung der gemessenen Spektren erfolgte nach Auslesen des Gerätespeichers und Transfer in das Tabellenkalkulationsprogramm MS Excel. Die weitere Prüfung erfolgte durch die Auswertung von Impulszahlen, die in den Detektionskanälen (256 Kanäle) des Messgerätes registriert wurden. Die geräteinterne Energiekalibrierung wurde dabei nur zur Orientierung verwendet.

Die Festlegung auf für die Nuklididentifikation auszuwertende Energielinien (Photopeaks) erfolgte nach Maßgabe der Untersuchungsaufgabe für die

- Energielinien zur Abschätzung der Aktivitäten nach der UNSCEAR Formel
- Energielinien zur Identifikation von künstlichen Radionukliden

Die zu bestimmenden Radionuklid-Aktivitäten für die UNSCEAR Abschätzung sind: U-238sec, Th-232sec und K-40. Ausgehend von einem säkularen Gleichgewicht in den jeweiligen Zerfallsreihen, erfolgte die Festlegung der auszuwertenden nuklidspezifischen Energielinien auf gammastrahlende Tochternuklide mit hohen Impulswahrscheinlichkeiten und einer möglichst ungestörten Peaklage. Die Energiefenster wurden gewählt, um Interferenzen mit anderen Gammalinien so gering wie möglich zu halten.

Für eine vergleichbare Betrachtung der jeweiligen Spektren wurden aus den Gesamtimpulsen die Impulsraten nach Gleichung 2 bestimmt.

$$\frac{\text{Impulse gesamt}}{\text{Messzeit}} = \text{Impulsrate [ips]}$$
 (1)

Die Messunsicherheit für die Impulsrate wurde nach Gleichung 2 bestimmt:

$$\frac{\sqrt{\text{Impulse gesamt}}}{\text{Messzeit}} = \text{Messunsicherheit SD [ips]}$$
 (2)

Auf Basis von Literaturangaben [1] wurde die Peaklage des jeweiligen Radionuklides anhand der geräteinternen Energiekalibrierung aufgesucht und um das jeweilige Peak-Maximum eine festgelegte Anzahl von Detektionskanälen ausgewertet (s. Tabelle 4-1). Für die Ermittlung der Aktivitätsverhältnisse zwischen Uran-238-Zerfallsreihe und Th-232-Zerfallsreihe wurden die hochenergetischen und relativ gut detektierbaren Gammalinien von Bi-214 und Tl-208 ausgewählt. Für die Prüfung auf die künstliche Radionuklide Co-60 und Cs-137 wurde der Kanalbereich gewählt, der aufgrund der Energiekalibrierung am K-40 den typische Energielinien entspricht.

Tabelle 4-1: Datengrundlagen und Auswertungen von Peak-Summen (PS).

Energie [keV]	Emmissions-	Nuklid	Ausgewertete	Bezeichnung
	wahrscheinlichkeit		Kanäle	Peaksummen
	/ 100 Zerfälle [%]			
2614,511 ± 0,010	99,755 ± 0,004	TI-208	7 Kanäle	PS(TI-208)
1764,494 ± 0,014	15,31 ± 0,05	Bi-214	7 Kanäle	PS(Bi-214)
1460,822 ± 0,006	10,55 ± 0,11	K-40	7 Kanäle	PS(K-40)
1332,492 ± 0,004	99,9826 ± 0,0006	Co-60	3 Kanäle	PS(Co-60)
661,657 ± 0,003	84,99 ± 0,20	Cs-137	3 Kanäle	PS(Cs-137)

Durch die Bildung von Peak-Summen (Tabelle 4-1) über mehrere Kanäle und den Abzug von Hintergrundimpulsen (Subtraktion des Hintergrundes außerhalb der Peak-Basislinie und Abzug von Nettoimpulsen der internen Kalibrierquelle im Bereich des K-40 Peaks), wurde ein Nettosignal (Netto-Peak-Summe) ermittelt, das für die weitere Auswertung zugrunde gelegt wurde.

Aus den Netto-Peak-Summen wurden die folgenden Abschätzungen vorgenommen:

Ermittlung des Nuklidverhältnisses Th-232sec/ U-238sec gemäß

$$\frac{Th - 232sec}{U - 238sec} = \frac{1}{k1} \cdot \frac{PS(Tl - 208)}{PS(Bi - 214)}$$
(3)

mit dem Kalibierfaktor k1 = 1,63 (Bestimmt durch interne Kalibriermessungen von NCC). U-238sec, Th-232sec bezeichnet hier die Aktivität der Zerfallsreihe, bezogen auf das jeweilige Mutternuklid.

Ermittlung des Nuklidverhältnisses K-40/U-238sec gemäß

$$\frac{K - 40}{U - 238sec} = k2 \cdot \frac{PS(K - 40)}{PS(Bi - 214)} \tag{4}$$

mit dem Kalibierfaktor k2 = 1,48 (Bestimmt durch interne Kalibriermessungen von NCC).

4.1 Messergebnisse

Die Rohdaten der durchgeführten Messungen sind in Anlage 3.2 aufgeführt. Die Abbildung 4-2 zeigt die Impulsraten (ips) der jeweils aufgenommenen Spektren und eine Auswertung, bei der die Impulsraten der Boden Referenzfläche im Südwesten der Deponie (Boden SW, Spektrum #153) von den Spektren der Ablagerungspunkte (Spektren #150, #151, #152) und der Messung auf der Bodenfläche im Nordosten (Spektrum #149) abgezogen wurden.

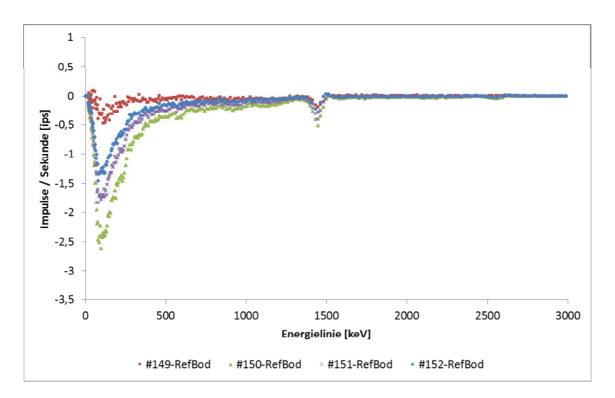


Abbildung 4-2: Gemessene Gammaspektren der Ablagerungsflächen (#150, #151, #152) und des Standortes Boden NO (#149) nach Abzug des Referenzboden Gammaspektrums #153, Boden SW (RefBod).

Die in Abbildung 4-2 dargestellten Gammaspektren zeigen die Abweichungen der jeweiligen Gammaspektren vom Gammaspektrum des Referenzbodens (z.B. #149-RefBod = Spektrum #149 minus Spektrum #153 Referenzboden). Es ist deutlich zu sehen, dass die auf dem Deponiekörper gemessenen Spektren (#150, #151, #152) für alle Energiekanäle Zählraten aufweisen, die geringer als die des Referenzbodens (#153 = "RefBod") sind (dargestellt als negative Werte). Auch das Bodenspektrum am Standort Boden NO_2 weist einen geringeren Strahlungspegel als der Referenzboden am Standort Boden SW auf (vgl. Anlage 2.1).

Der in dieser Auswertung sichtbare Peak im Bereich 1460 keV stammt zu einem Teil von einem internen Prüfstrahler (Kalisalz mit Radionuklid K-40) und von natürlicherweise vorkommendem K-40. Für die weitere Auswertung der Zählraten wurde der Kalium-Peak um den Betrag der Netto-Peak-Summe des internen Kalibrierstrahlers, die durch die Peak-Auswertung von mehrfach gemessenen Hintergrundspektren unter einer Abschirmung bestimmt wurde, bereinigt.

Die Ergebnisse der Auswertung der Netto-Peak-Summen sind in Anlage 3.2 aufgeführt. In Tabelle 4-2 sind die weiteren Ergebnisse der Auswertungen nach Gleichung 3 und Gleichung 4 zusammengestellt.

Tabelle 4-2: Ergebnisse der Spektrenauswertung – Natürliche Radionuklide

	#149	#150	#151	#152	#153
Th-232sec / U-238sec	0,74	0,54	1,02	1,53	1,20
K-40 / U-238sec	11,75	8,55	13,53	28,67	24,09
ODL, gemessen [nSv/h]	114	78	74	96	124
U-238sec [Bq/g]	0,044	0,038	0,025	0,024	0,041
Th-232sec [Bq/g]	0,060	0,021	0,026	0,037	0,049
K-40 [Bq/g]	0,520	0,325	0,338	0,688	0,988
ODL, berechnet [nSv/h]	113	79	76	97	125

Zur Prüfung, ob radiologisch relevante Aktivitäten aus der Entsorgung freigegebener Abfälle vorhanden sind, eignen sich aufgrund des im Messkonzept beschriebenen Nuklidvektors nur die Radionuklide Co-60 und Cs-137. Hier wird geprüft, ob erkennbare Peaks im Spektrum vorkommen, die auf eine Kontamination durch diese Radionuklide hinweisen.

Grundlage der Auswertung sind die Netto-Peak-Summen in den jeweils ausgewerteten Kanälen und ihre statistische Messunsicherheit. Die Ergebnisse dieser Auswertung sind in Tabelle 4-3 zusammengestellt. Sie ergeben keine Hinweise auf die geprüften Radionuklide.

Tabelle 4-3: Ergebnisse der Spektrenauswertung – Indikatornuklide Cs-137, Co-60

	#149	#150	#151	#152	#153
PS(Cs-137)	-0,01 ± 0,03	-0,01 ± 0,03	-0,05 ± 0,02	-0,05 ± 0,03	-0,08 ± 0,03
PS(Co-60)	-0,03 ± 0,01	-0,01 ± 0,01	-0,03 ± 0,01	-0,03 ± 0,02	-0,07 ± 0,02

5 Untersuchung von Bodenproben

5.1 Untersuchungsaufgabe und Durchführung

Untersuchungsaufgabe It. Messkonzept:

Bestimmung der spezifischen Aktivität von künstlichen und natürlichen Radionukliden im Boden. Horizontierte Probenahme (0-30 cm) und gammaspektrometrische Analyse im Labor am kritischen Aufpunkt für Staubdeposition im Nordosten der Deponie.

Durchführung

Die Bodenuntersuchungen wurden auf Bodenflächen im direkten Umfeld der Deponie durchgeführt. Dabei wurden Bodenstandorte ausgewählt, die sich im Südwesten (Boden SW) und im Nordosten (Boden NO_2) der Deponie befinden.

Am Standort Boden NO_2 wurde ein Bodenprofil angelegt (vgl. Abbildung 5-1) und daraus in 5 cm Tiefenabschnitten Proben entnommen, die einer bodenkundlichen Kurzbewertung unterzogen wurden.

Abbildung 5-1: Bodenprofil am Standort Boden NO_2 bis 30 cm Tiefe aus dem in 5 cm Schichten Probenmaterial entnommen wurde.

Nach der durchgeführten bodenkundlichen Kurzbewertung handelt es sich um ein umgelagertes natürliches Substrat aus überwiegend schluffigem Material mit tonigen und sandigen Bestandteilen (Ls3; Lu; Lt3). In den tiefer liegenden Schichten wurden zum Teil nicht standorttypische Gesteinsbruchstücke vorgefunden (vermutl. Gleisschotter 32-63 mm Korngröße). Das standorttypische Ausgangsmaterial in Form von Sand- Ton- und Mergelstein des Mittelkeupers wurde aufgrund der geringen Tiefe des Profils (30 cm) nicht nachgewiesen. Ein ca. 10 cm schwach humoser Oberboden mit einer dichten

Durchwurzelung und wenige tiefer führende Makroporen deuten auf ein intaktes Bodengefüge hin. Nach [2] handelt es sich bei dem im Umfeld des Standortes vorliegenden Bodentyp um einen Braunerde-Pelosol aus geringmächtiger lösslehmhaltiger Fließerde über Keuper-Tonfließerde. Die bodenbildenden Prozesse haben der Bodenfarbe nach zu urteilen zu ersten Verlagerungs- und Mineral-Neubildungserscheinungen geführt. Die Bodenfarbe (überwiegend 10YR 6/4 nach Munsell Farbtafel) weist in einer Tiefe von ca. 25 cm rost-rötliche Verfärbungen (7.5YR 4/4 nach Munsell Farbtafel) auf, die vermutlich auf die Bildung von sekundären Fe/Mn-Mineralen zurückzuführen sind. Nach Angaben der AVL wurde der untersuchte Bodenbereich im Jahr 1982 umgelagert.

Die entnommenen Proben wurden am 13.10.2016 per Kurier an das Analyselabor verschickt.

5.2 Messergebnisse

Der Messbericht des Labors ist in Anlage 4.1 dokumentiert. Die darin aufgeführten Ergebnisse sind (ohne zugehörige Messunsicherheit) in Tabelle 5-1 aufgeführt. Da die Messergebnisse belegen, dass die spezifische Aktivität von Ra-228, Th-228 annähernd gleich ist, kann die Zerfallsreihe im säkularen Gleichgewicht und somit die Aktivität der Tochternuklide auch als repräsentativ für das Mutternuklid Th-232 angesehen werden. Entsprechend wurde die Aktivität des Tochternuklides Th-228 als Wert für Th-232 in Tabelle 5-1 eingetragen.

Tabelle 5-1: Ergebnisse der gammaspektrometrischen Untersuchung an Feststoffproben [Bq/g], Bodenprofil am Standort Boden NO_2 (vgl. Anlage 2.1).

Probe	U-238	Ra-226	Pb-210	Th-232	K-40	Cs-137	Co-60
BH so 0-5 cm	0,053	0,046	0,071	0,059	0,523	0,015	<0,00024
BH so 5-10 cm	0,050	0,041	0,057	0,057	0,507	0,0062	<0,00017
BH so 10-15 cm	0,058	0,047	0,055	0,064	0,540	0,0062	<0,00019
BH so 15-20 cm	0,054	0,043	0,043	0,059	0,509	0,00033	<0,00021
BH so 20-25 cm	0,054	0,047	0,043	0,064	0,539	0,00017	<0,00022
BH so 25-30 cm	0,054	0,047	0,045	0,063	0,575	0,00013	<0,00020

^{*)} Die Bezeichnung "BH so ##" ist auf das Bodenprofil im Nordosten der Deponie (Boden NO 2) bezogen.

Die in Tabelle 5-1 aufgeführten Ergebnisse der gammaspektrometrischen Untersuchungen zeigen:

- In der U-238 Zerfallsreihe ist das radioaktive Gleichgewicht schwach gestört. Vermutlich durch verwitterungsbedingte Verlagerungsprozesse (U-238, Ra-226) und atmosphärische Deposition (Pb-210). Der Th-230 Messwert ist mit einer hohen Messungenauigkeit behaftet.
- Das Radionuklid Pb-210 weist im oberen Bodenhorizont etwas h\u00f6here spezifische Aktivit\u00e4t auf. Dieser Effekt ist durch die atmosph\u00e4rische Deposition von dem aus Radon (Rn-222) gebildeten Pb-210 bedingt und nat\u00fcrlichen Ursprungs.
- Die Cs-137 Aktivität ist im Bodenprofil in den oberen Horizonten angereichert und nimmt mit der Tiefe ab. Aus den Cs-137 Aktivitäten des Bodenprofils unter Annahme einer Bodendichte

- von 1500 kg/m³ errechnet sich ein flächenbezogenes Inventar von 2102 Bq/m² Cs-137. Das entspricht der ortsüblichen Deposition von Cs-137 im Rahmen der Tschernobyl Reaktorhavarie [3], [4].
- Alle Messwerte von Co-60 liegen unter der Nachweisgrenze. Eine Kontamination des Bodens mit Co-60 durch Abwehen vom Abfall ist für den untersuchten Bodenstandort nicht nachweisbar.

Die Ergebnissen der Tabelle 5-1 zeigen, dass in dem untersuchten Bodenprofil die natürlichen Radionuklide weitgehend homogen verteil sind. Die ODL im 1 m Höhe über dem Boden kann daher mit Hilfe der von UNSCEAR [5] (UNSCEAR 2008 Annex B; Para 81) angegeben Dosiskoeffizienten für Bodenstrahlung abgeschätzt werden. Die Ergebnisse stimmen sehr gut mit denen der ODL-Messungen überein (vgl. Kapitel 3.2 und Anlage 1.3).

Tabelle 5-2: Berechnung der ODL aus den an Laborproben bestimmten spezifischen Aktivitäten für den Bodenstandort im Nordosten der Deponie (Boden NO_2).

	Einheit	U-238	Th-232	K-40	DL, terrestr.	DL, kosm	ODL *)
Dosiskoeffizient nach UNSCEAR (2008)	nSv/h / (Bq/g)	462	604	41,7			
Messwerte							
BH so 0-5 cm	Bq/g	0,046	0,059	0,523			
BH so 5-10 cm	Bq/g	0,041	0,057	0,507			
BH so 10-15 cm	Bq/g	0,047	0,064	0,54			
BH so 15-20 cm	Bq/g	0,043	0,059	0,509			
Mittelwert	Bq/g	0,044	0,060	0,520			
Dosisleistung, berechnet	nSv/h	20	36	22	78	35 - 40	113 - 118

^{*)} Arithm. Mittelwert der ODL-Messungen im Umfeld des Bodenprofils lag bei 119 nSv/h (vgl. Anlage 1.4).

6 Messungen an Sickerwasserproben

6.1 Untersuchungsaufgabe und Durchführung

Durch die Untersuchung von Sickerwasser werden die lösbaren Radionuklidfrachten einer Ablagerungsfläche ermittelt. Für die Sickerwasseruntersuchungen wurden deshalb Drainagen oder Sickerwassersammler ausgewählt, die Abschnitte entwässern, in welchen Ablagerungsbereiche der "Rückbau Abfälle" liegen.

Die Lage der Sickerwassersammler unterhalb der Ablagerungsflächen wurde anhand von Leitungsplänen geprüft und ist in Anlage 2 beigefügt. Demnach ergibt sich die in Tabelle 6-1 aufgeführte Zuordnung der Sickerwasserproben zu den Ablagerungsflächen.

Tabelle 6-1: Sickerwasserproben mit Zuordnung der jeweiligen Deponiebereiche.

Probe	Volumen	Bereich
BHSiWa S76	5 I	Ablagerungsfläche 1383419
BHSiWa-H3 S76	11	Ablagerungsfläche 1383419
BHSiWa S70	5 I	Ablagerungsfläche 1386057
BHSiWa-H3 S70	1 l	Ablagerungsfläche 1386057
BHSiWa S1/4	5 I	Altdeponie Hausmüll
BHSiWa-H3 S1/4	11	Altdeponie Hausmüll
BHTD-H3 T12	1 l	Tiefendrainage

Die Proben wurde mittels eines 1 Liter Schöpfers aus den jeweiligen Sickerwasserschächten entnommen und am 13.10.2016 per Kurier zur Analytik in das beauftragte Labor verschickt. Als Analysenumfang wurden gemäß dem abgestimmten Messkonzept die folgenden Parameter analysiert:

- Bestimmung der Radionuklide U-238, Th-230, Ra-226, Pb-210, U-235, Ac-227, Ra-223, Ra-228, Th-228, Ra-224, K-40, Cs-137 und künstliche Radionuklide mittels doppelter Gamma-spektrometrie im zeitlichen Abstand nach Volumenreduktion;
- Bestimmung der Gesamtalpha- und Gesamtbetastrahler mittels Messungen im Durchflussproportionalzählrohr;
- Bestimmung von Tritium mittels Flüssigszintillationsspektrometrie (LSC) nach Destillation für Tritium in Sickerwässern und nach elektrolytischer Anreicherung für Quell- und Grundwasser.

6.2 Messergebnisse

Der Prüfbericht der Laboruntersuchungen an Sickerwässern und dem Wasser aus der Tiefendrainage ist in Anlage 4.2 dokumentiert. Eine Zusammenstellung der Messergebnisse (ohne Messunsicherheit) für die Parameter, bei denen Messwerte über der Nachweisgrenze erhalten wurden, enthält Tabelle 6-2. Die Analytik war durch die teilweise hohen Salzgehalte des Sickerwassers erschwert.

Die Tritium Konzentrationen aus der unterhalb der Deponie BURGHOF liegenden Tiefendrainage, sind mit 0,53 Bg/l als ein normaler Wert für junges Grundwasser einzuordnen.

Die U-235/U-238 Verhältnisse (vgl. Tabelle 6-2) liegen sämtlich im Bereich des natürlichen Aktivitätsverhältnisses. Es sind keine Hinweise auf Beimischungen von isotopisch verändertem Uran erkennbar.

Das Isotopenverhältnis U-234/U-238 (1,2 bis 1,3) entspricht dem in vielen Grundwässern gefundenen Wert. Die etwas höheren U-234 Konzentrationen von sind auf eine Mobilisierung von U-234 durch Rückstoßprozesse zu erklären.

Tabelle 6-2: Ergebnisse der Sickerwasser- und Drainagewasseruntersuchung BURGHOF in [Bq/l].

	BHSiWa-H3 S76	BHSiWa-H3 S70	BHSiWa-H3 S1/4			
	D-A	D-A	D-0			
	AblPkt. 1383419	AblPkt. 1386057	Altdeponie Hausmüll			
Tritium	2,1	12,5	< 1,8			
Ges-α	0,76	<0,21	0,39			
Ges-β	13	26	17			
U-238	0,196	0,0054	0,127			
U-234	0,235	0,0069	0,160			
Th-230	<1,4	<2,4	<1,9			
Ra-226	0,15	<0,19	<0,12			
Pb-210	<0,14	<0,38	<0,31			
U-235	0,0090	0,000241	0,0059			
Ra-228	<0,051	<0,058	<0,035			
Th-228	0,025	0,021	0,031			
K-40	7,9	20,9	17,1			
Cs-137	0,13	0,043	<0,0072			
	Aktivitätsverhältnisse Uran					
U-234/U-238	1,20	1,28	1,26			
U-235/U-238	0,046	0,045	0,046			

Abkürzungen zu "Typ": D-0: Deponieabschnitt ohne abgelagerte Freigabeabfälle; D-A: Deponieabschnitt mit abgelagerten Freigabeabfällen.

Die Ergebnisse der Sickerwasseranalysen weisen in den Sickerwassersträngen, die Deponieabschnitte entwässern, in denen Freigabeabfälle deponiert wurden, leicht erhöhte Tritiumkonzentrationen gegenüber dem natürlichen Hintergrund von 1 Bq/l auf. Außerdem wurden in einigen dieser Abschnitte messbare Cs-137 Konzentrationen festgestellt. Letzteres wurde allerdings nur erreicht, da die Analysen mit Methoden ausgeführt wurden, die für Trinkwasseruntersuchungen entwickelt wurden. Bei der Überwachung von Deponiesickerwässern im IMIS-Messprogramm des Bundes, die von verschiedenen Messlaboren der Länder realisiert wird, wurden bei entsprechend niedrigen Nachweisgrenzen ähnliche Cs-137 Konzentrationen gemessen (Jahresbericht Umweltradioaktivität und Strahlenbelastung 2012, Tabelle 2.6-1., Herausgeber: BMUB 2014).

Um die Messergebnisse in Hinblick auf ihre radiologische Relevanz beurteilen zu können, sind in Tabelle 6-3

Referenzwerte f
ür radiologische Parameter der Trinkwasserverordnung (TrinkwV)

 Aktivitätskonzentrationen zur Beurteilung von Ableitungen aus Strahlenschutzbereichen nach Anlage VII Teil B Tab. 4 StrlSchV

zusammengestellt. Die Messwerte nach Tabelle 6-2, die über der Nachweisgrenze liegen und höher als diese Referenzwerte ausfallen, sind die der Parameter Gesamt- β und Gesamt- α . Der Parameter Gesamt- β wird im Sickerwasser durch das chemische Element Kalium mit seinem radioaktiven Isotop K-40 bestimmt. K-40 trägt nicht zu einer zusätzlichen Strahlenexposition bei. Die radiologische Relevanz des Parameters Gesamt- α ergibt sich aus der Zusammensetzung des Nuklidgemisches. Die fachgerechte Bewertung des Nuklidgemisches (mit Anwendung einer Summenformel) ist nicht Teil dieses Messberichtes.

Tabelle 6-3 Werte zur Beurteilung von Radionukliden im Wasser

	TrinkwV (2015)	Anlage VII Teil B Tab. 4 StrlSchV
	Bq/I	Bq/I
Tritium (Bq/I)	100 (*)	10.000
Ges-α (Bq/I)	0,05 - 0,1 (+)	k.A.
Ges-β (Bq/l)	1,0	k.A.
U-238 (Bq/l)	3,0	3
U-234 (Bq/l)	2,8	2
Th-230 (Bq/l)	k.A.	0,2
Ra-226 (Bq/l)	0,5	0,2
Pb-210 (Bq/l)	0,2	0,1
U-235 (Bq/I)	k.A.	3
Ra-228 (Bq/l)	0,2	0,03
Th-228 (Bq/l)	k.A.	0,2
K-40 (Bq/I)	k.A.	k.A.
Cs-137 (Bq/l)	11	30

^(*) als Indikator aufgeführt, kein Teil des Parameters Richtdosis. (+) im Rahmen spezifizierter Screening Messungen.

7 Quellen

- [1] M.-M. Bé *u. a.*, *Table of Radionuclides*, Bd. 8. Pavillon de Breteuil, F-92310 Sèvres, France: Bureau International des Poids et Mesures, 2016.
- [2] "LGRB-Kartenviewer". [Online]. Verfügbar unter: http://maps.lgrb-bw.de/?view=lgrb_geola_bod. [Zugegriffen: 31-Okt-2016].
- [3] D. Tait und D. Kock, "Fachgespräch Überwachung der Umweltradioaktivität (2013)", in *Schriftenreihe Fachgespräch Überwachung der Umweltradioaktivität*, Bremen, 2016.
- [4] LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, "Radioaktivität in Baden-Württemberg 2002 bis 2011", Karlsruhe, 1436–2783, Mai 2012.
- [5] United Nations, Hrsg., Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2008 report to the General Assembly, with scientific annexes. New York: United Nations, 2010.

Anlage 1

Tabellen, Skizzen und Nachweise zu ODL-Messungen

Unterlagen zum Messvergleich des Bundesamtes für Strahlenschutz

Bundesamt für Strahlenschutz FG SW 1.3 "Dosimetrie und Messmethodik" Köpenicker Allee 120 – 130 D – 10318 Berlin

Berlin, den 1.7.2016

PROTOKOLL

Vergleichsmessungen von Ortsdosisleistungsmessgeräten

Auftraggeber: Leitstelle des Bundes für Fragen der

Radioaktivitätsüberwachung bei erhöhter natürlicher

Radioaktivität

Messort: Referenzmessflächen der Wismut GmbH, Ronneburg /

Reust

Messdatum: 7. und 8.6.2016

Vorbereitung, Durchführung: Herr Norman Kinal (Wismut GmbH)

Herr Sebastian Geß (Wismut GmbH)

Herr Dr. Joachim Döring, Frau Monika Ebert, Herr Jürgen Mielcarek (alle Bundesamt für Strahlenschutz, Fachgebiet SW 1.3, Berlin)

Referenzsonde: Mitteldruck-Ionisationskammer FHT 191 N,

Fa. Thermo Fisher Scientific Messtechnik GmbH

Ergebnisse: siehe **TABELLE 1**

PROTOKOLL

zu den Vergleichsmessungen von ODL-Messgeräten auf den Referenzmessflächen der Wismut GmbH am 7. und 8.6.2016

Zur Qualitätssicherung umgebungsdosimetrischer Messungen mit tragbaren Ortsdosisleistungsmessgeräten wurden am 7. und 8.6.2016 auf den Referenzmessflächen des Sanierungsbetriebes Ronneburg der Wismut GmbH Vergleichsmessungen durchgeführt. An den Vergleichsmessungen, die vom Fachgebiet SW 1.3 des Bundesamtes für Strahlenschutz als der Leitstelle des Bundes für Fragen der Radioaktivitätsüberwachung bei erhöhter natürlicher Radioaktivität und der Wismut GmbH organisiert wurden, beteiligten sich:

- Institute of Oncology, Ljubljana, Slovenia
- Agency for Radwaste Management, ARAO, Ljubljana, Slovenia
- Jozef-Stefan-Institute, ELME, Ljubljana, Slovenia
- University Medical Centre Ljubljana, Slovenia
- Slovenian Armed Forces, Mobile Radiological Laboratory
- Institute for Medical Research and Occupational Health, Republika Hrvatska
- Radiation Protection Service RŽV, Gorenja vas, Slovenia
- drei Niederlassungen der Wismut GmbH
- sieben Landesbehörden
- ein Messtechnikproduzent
- Leibniz-Universität Hannover
- 12 Firmen und Forschungseinrichtungen
- ein Fachgebiet des BfS.

Insgesamt 150 Messgeräte wurden in die Vergleichsmessungen einbezogen.

Die genutzten Referenzmessflächen (quadratisch mit einer Kantenlänge von 20 m und einer Schichtdicke von mindestens 0,6 m) haben folgende Materialzusammensetzung:

Fläche 1: Beton mit natürlichem Aktivitätsgehalt.

Fläche 2: Unbearbeitetes Material der Zentralhalde des

Sanierungsbetriebes Ronneburg.

Fläche 3: Aufbereitungsrückstände des ehemaligen Aufbereitungsbetriebes

Seelingstädt mit Zementzusatz. Diese Fläche ist mit einer

Plastiküberdeckung versiegelt.

Alle Messungen wurden in 1 m Höhe über dem Zentrum der jeweiligen Messfläche ausgeführt.

Die ermittelten Ortsdosisleistungen sind unter folgenden Messbedingungen bestimmt worden (Daten von der Wismut GmbH):

	7.6.2016	8.6.2016
Allgemeine Wetterbedingungen	sonnig	sonnig
Erdboden	feucht	feucht
Mittlere Temperatur	24°C	23°C
Mittlere relative Luftfeuchte	45%	58%
Mittlerer Luftdruck	986 hPa	982 hPa
Mittlere Windgeschwindigkeit	2 m/s	1 m/s
Mittlere Rn-Konzentration in der Luft	10 Bq/m³	14 Bq/m³

Als Referenzsonde wurde vom Bundesamt für Strahlenschutz die Mitteldruck-Ionisationskammer FHT 191 N (Nr. 1075) verwendet. Deren Ansprechvermögen für Photonenstrahlung ist weitgehend energie- und richtungsunabhängig. Mit Unterstützung der Physikalisch-Technischen Bundesanstalt Braunschweig wurden die Ansprechvermögen für terrestrische Strahlung und Höhenstrahlung sowie die Geräteeigenanzeige bestimmt. Die mit dieser Sonde über den Messflächen ermittelten Gesamtdosisleistungen, zusammengesetzt aus terrestrischer Strahlung und Höhenstrahlung, werden als die jeweiligen Referenzmesswerte angesehen. Für die drei Messflächen wurden unter den oben genannten Messbedingungen folgende Dosisleistungen bestimmt:

Photonen-Äquivalentdosisleistung Hx

Messfläche (MF)	7.6.2016	8.6.2015
Fläche 1 (Beton)	$73 \text{ nSv/h} \pm 2 \text{ nSv/h}$	$70 \text{ nSv/h} \pm 3 \text{ nSv/h}$
Fläche 2 (Haldenmaterial)	203 nSv/h <u>+</u> 2 nSv/h	203 nSv/h <u>+</u> 3 nSv/h
Fläche 3 (Tailings)	784 nSv/h <u>+</u> 2 nSv/h	774 nSv/h <u>+</u> 6 nSv/h

Auf Grund der geringen Schwankungen der Referenzwerte brauchte stets nur ein Referenzwert angegeben zu werden.

Dennoch: Vielen Dank für die Zuordnung der Messungen zur Uhrzeit!

Entsprechend einer Empfehlung des Normenausschusses Radiologie (NAR), zitiert in PTB-Dos-45 (2003), wird hier für natürliche Umgebungsstrahlung der Umrechnungsfaktor $H^*(10)/H_X = 1,0$ verwendet, so dass die angegebenen Dosisleistungswerte auch für die Umgebungs-Äquivalentdosisleistung $H^*(10)$ gelten.

Die Ergebnisse aller in die Vergleichsmessungen einbezogenen Messgeräte sind in der beigefügten **TABELLE 1** zusammengestellt. Die dort angegebenen Werte **A1, A2 und A3** sind Mittelwerte der Messgeräteanzeigen ohne Korrekturen. Die Werte **B1, B2 und B3** sind die Quotienten aus den Referenzmesswerten des BfS und den Anzeigen des jeweiligen Messgerätes.

Gelb unterlegte Anzeigewerte weisen darauf hin, dass der Mittelwert der Messreihe eine relative Standardabweichung ≥ 10 % aufweist. Bei rot unterlegten Anzeigewerten sind es ≥ 20 %; in Anlehnung an die Eichfehlergrenzen wird empfohlen, dieses Messgerät in vergleichbaren Strahlungsfeldern nicht einzusetzen. Falls die Parameter des Gerätes jedoch eine grundsätzliche Eignung für die vorgesehene Messung vermuten lassen, sollte eine technische Überprüfung vorgenommen werden (siehe auch unter "Weitere Informationen").

Weitere Informationen

- 2015: "Es wurde berichtet, dass bei drei Messgeräten des gleichen Typs im vergangenen Jahr eine kontinuierliche scheinbare Zunahme des Ansprechvermögens auftrat."
 - 2016: Nach unseren Informationen ist dem Hersteller die Fehlerquelle nunmehr bekannt; der Fehler wird beim Hersteller behoben.
- 2015: "Wir haben vor, mit Unterstützung der Wismut GmbH im nächsten Jahr für etwas "Ablenkung" zu sorgen (Sitzgelegenheiten und kleine Tische für

Gesprächsrunden), um die leider auch in diesem Jahr beobachteten "Gruppenbildungen" auf den Messflächen unattraktiv zu machen. (Es sollte stets pro Institution nur die **unbedingt** notwendige Anzahl an Personen auf der Messfläche agieren.)"

2016: Dies ließ sich auf Grund der neuen Strahlenschutzanweisung leider nicht realisieren.

- 2015 / 2016, interne Information für die Wismut GmbH: Messungen über den Mittelpunkten der MF können mit *stehender oder hängender* Sonde FHZ 601 A durchgeführt werden. Es gibt keine signifikanten Unterschiede bei den Anzeigewerten. Aus den bekannten Gründen wird jedoch nur die Messung mit stehender Sonde empfohlen. Auch bei Lagerung und Transport sollen die Sonden stehen.
- Diese Unterlagen werden wieder an alle Eingeladenen versandt, um den Informationsstand aktuell zu halten.

Anlage

TABELLE 1

0,95 0,95 0,93 1,09 1,05 1,08 0,94 0,87 1,31 0,97 1,53 1,04 0,90 1,32 1,20 0,86 0,91 0,97 1,01 **B**3 (Tailings) Fläche 3 774 812 819 712 849 825 784 835 738 890 589 802 505 742 858 585 647 768 896 A3 801 (Haldenmaterial) 1,18 0,86 1,22 0,84 1,13 1,24 0,94 0,79 0,99 0,83 0,95 1,28 1,12 0,84 1,24 1,28 0,91 0,84 0,91 **B**2 Fläche 2 236 166 243 172 217 213 224 243 203 203 179 164 223 258 245 158 241 164 158 **A**2 18 0,65 5,83 1,09 1,04 1,03 96'0 96'0 0,64 0,68 1,06 1,08 1,63 0,90 0,71 56 1,94 0,91 **B**4 Fläche 1 (Beton) auf den Referenzmessflächen der Wismut GmbH vom 7. - 8.6.2016 Ergebnisse der Vergleichsmessungen von ODL-Messgeräten 110 103 107 A 20 73 73 99 45 43 36 73 91 64 67 89 98 63 65 78 17 Messgröße in nSv/h in nSv/h H*(10) H*(10) H*(10) H*(10) H*(10) $H^*(10)$ $H^*(10)$ H*(10) $H^*(10)$ H*(10) H*(10) H*(10) H*(10) H*(10) H*(10) $H^*(10)$ H*(10) ž ř Nummer 42540/61 139819 142649 133613 123893 92040 92409 0269 1075 1075 7482 514 Sonde E-10 LB 1236-H10 6150 AD-b/E 6150 AD-b/E 6150 AD-b/E 6151 AD-b/E 6150 AD-b/E 6150 AD-b/H **FHT 191 N FHT 191 N** FHZ 672 E LB 1236 Тур FHZ 672 935-3415 141074 Nummer 141619 GR 130 103272 124933 129288 124933 102603 143049 18629 82989 12431 7539 11181 11187 10392 7663 280 07.06.2016 08.06.2016 Grundgerät dentiFINDER 6150 AD 6/E **UMO LB 123** 6150 AD 6/H 6150 AD 6/H 6150 AD 6/H 6150 AD 6/E 6150 AD 5/E RadEye PRD 6150 AD 6/E 6151 AD 5/E FH 40G-L10 FH 40 G- 10 6150 AD 6 Rad Eye X-G FH 40 G-L mini Spec FH 40 G-L LB 123 Typ Referenz Nummer Interne 18/4 18/2 18/3 18/6 20/2 20/3 20/4 20/5 20/6 21/2 21/3 21/4 21/5 18/7 19/1 20/1 21/1 18/1

ODL-Messungen auf der Deponie BURGHOF

ODL-Messungen auf der Deponie BURGHOF

12.10.2016 15:30 Uhr

Deponie BURGHOF, Abl.-Pkt. 1 (Ablagerungsfläche 1304325)

Aufnahme Spektrum #150. Der Standort des Gammaspektrometers wurde eingemessen (Anlage 2.1)

ODL in 1 m Höhe in nSv/h mit Automess

ca. 4 m x 4 m Raster sehr unebenes Relief!

Messungen am Hang / Böschungen (kursiv geschrieben)

Zusammenfassung:

Mittelwert: 77 nSv/h
Maximalwert: 89 nSv/h
Mindestwert: 68 nSv/h

N ↑						
		85	82	80	83	
77	81	78	75	73	78	77
68	82	78	68	74	72	79
77	72	76	78	69	89	71
80	75	73	76	75	87	85
	Deponies	traße				
76	68	72	80	85	80	

Standort Gammaspektrometer, Abl.Pkt. 1, Spektrum #150

Fotodokumentation:

ODL-Messungen auf der Deponie BURGHOF

12.10.2016 16:20 Uhr

Deponie BURGHOF, Abl.-Pkt. 2 (Ablagerungsfläche 1386057)

Aufnahme Spektrum #151. Der Standort des Gammaspektrometers wurde eingemessen (Anlage 2.1)

ODL in 1 m Höhe in nSv/h mit Automess

ca. 4 m x 4 m Raster

Plateaufläche

Fotodokumentation:

Zusammenfassung:

Mittelwert: 86 nSv/h Maximalwert: 105 nSv/h

Mindestwert: 74 nSv/h

N 1

89

92

-									
	87	87	85	82	81	82	83	77	
	86	88	92	97	74	81	85	79	
	92	98	105	84	80	78			

Standort Gammaspektrometer, Abl.-Pkt. 2, Spektrum #151

HE001-04.2 Messbericht Burghof 2 von 4

ODL-Messungen auf der Deponie BURGHOF

12.10.2016

16:40 Uhr

Deponie BURGHOF, Abl.-Pkt. 3 (Ablagerungsfläche 1383420)

Aufnahme Spektrum #152. Der Standort des Gammaspektrometers wurde eingemessen (Anlage 2.1)

ODL in 1 m Höhe in nSv/h mit Automess

ca. 4 m x 4 m Raster

Deponiefläche Hangfläche (ca. 20 m "tiefer" als die anderen 2 Flächen -> Einbauhöhe 2008)

Zusammenfassung:

Mittelwert: 101 nSv/h
Maximalwert: 115 nSv/h
Mindestwert: 88 nSv/h

	N ↑			
	105	115	101	105
	106	110	103	103
107	100	98	96	102
100	105	112	95	106
89	99	94	93	105
	92	102	88	94
	103	100	94	109

Standort Gammaspektrometer, Abl.-Pkt. 3, Spektrum #152

Fotodokumentation:

ODL-Messungen auf der Deponie BURGHOF

12.10.2016 18:00 Uhr

Deponie BURGHOF an verschiedenen Orten

Zusätzliche Messungen:

Haufwerk Mergel aus Hamberg: 140-150 nSv/h

Haufwerk Gleisschotter aus Granit: 140-150 nSv/h

andere Charge: 120-130 nSv/h

Mergel Burghof Zwischenlager Haufwerk: 170-190 nSv/h

natürliches Anstehendes (mit Kalk): 150-160 nSv/h

Ostböschung DA 10

ODL-Messungen im Bereich der Bodenflächen BURGHOF

Anlage 1.3 ODL-Messungen im Bereich der Bodenflächen

12.10.2016 14:10 Uhr Deponie BURGHOF, Boden SO

Aufnahme Spektrum #149. Der Standort des Gammaspektrometers wurde eingemessen (Anlage 2.1)

ODL in 1 m Höhe in nSv/h mit Automess 4 m x 4 m Raster (außerhalb Zaun 2 m)

in 0 m Abstand: 140-150 nSv/h (wo roter Mergel anstehend)

im angelegten Bodenprofil: 150-160 nSv/h

Asphalt am Grünanlieferbereich (nebenan): 0,07 µSv/h

Zusammenfassung:

Mittelwert: 119 nSv/h
Maximalwert: 128 nSv/h
Mindestwert: 103 nSv/h

	N Zaun De	ponieeir	ngang
	115	127	114
	119	112	116
	122	111	113 A
	118	122	124 D
	118	125	120 A
	110	126	112 D
122	121	122	117
126	114	112	110
103	123	122	126
120	126	126	120
116	120	128	123

Standort Gammaspektrometer, Boden SO_1, Spektrum #149 Bodenprofil, Boden SO_2

Anlage 1.3 ODL-Messungen im Bereich der Bodenflächen

12.10.2016 18:00 Uhr Deponie BURGHOF Boden NW

Aufnahme Spektrum #153. Der Standort des Gammaspektrometers wurde eingemessen (Anlage 2.1)

ODL in 1 m Höhe in nSv/h mit Automess 4 m x 4 m Raster (außerhalb am Zaun 2 m) Zufahrt zum Tor wahrscheinlich geschottert

Zusammenfassung:

Mittelwert: 123 nSv/h
Maximalwert: 152 nSv/h
Mindestwert: 80 nSv/h

Zaun	Tor		-			
	144	114	113	142	134	
	151	138	103	120	123	
	152	146	105	85	80	
	146	134	124	97		
	131	144	128	107	83	
	142	141	134	122	Asphalt 82 Deponiestraß	е

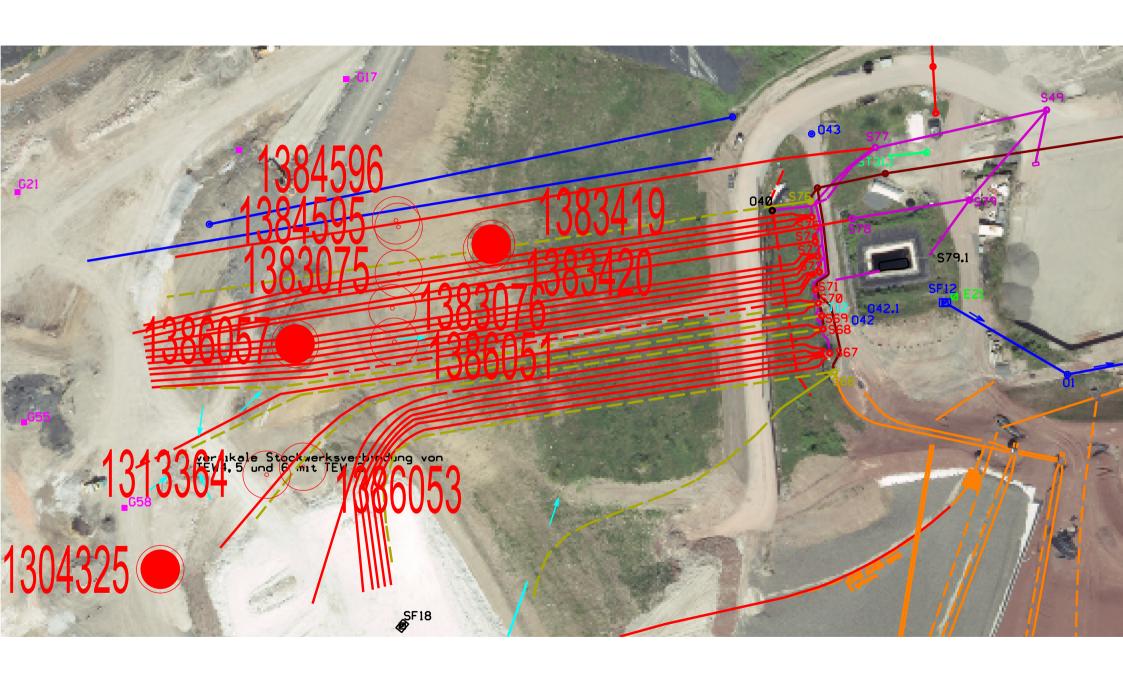
Standort Gammaspektrometer, Boden NW, Spektrum #153

Fotodokumentation:

Anlage 2

Planunterlagen (durch AVL zur Verfügung gestellt)

Anlage 2.1


Lageplan der Deponie BURGHOF mit verzeichneten Messpunkten

Anlage 2.2

Leitungsnetzplan der Sickerwasserdrainagen und -sammler der Deponie BURGHOF

Anlage 3

Protokolle der Bodenuntersuchungen und der gammaspektrometrischen Felduntersuchungen

Anlage 3.1

Protokoll der bodenkundlichen Untersuchung

Schichtenverzeichnis/ Probenahmeprotokoll EN ISO 22475-1:2006 (D)/ KA 5

	ort: Deponie Burgho		Komm-N	r:			
Aufsc	hlussart: Sclon	rf	Bohrtech	nik:	Reihenfolge Nr.:		
	n: 12.10.201		Uhrzeit:	14	:35		
Witter	T	✓ Sonne	e	Bewölkur	ng Lufttemp	eratur °C: 18"	
Jze	a) Benennung Bodenart Feinbodenart, Grobbode		imengungen %		Bemerkungen	Probenahme	
tergrei GOK]	b) Ergänzende Bemerku Redoxmerkmale, Gefüge) Ergänzende Bemerkungen Feuchte, wass Redoxmerkmale, Gefüge		ch,	Werkzeug Ø mm Kernverlust	EP EP	
Horizontuntergrenze [cm u. GOK]	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe nach Munsell	*) Humus- gehalt	Schadstoffe	Probenart Probenart Proben Nr.	
후	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Carbonat		E K Von - bis [m u. GOK]	
	a) LS3 - L	Lu-Lt	3, fGr	1	Spaken	E 1 BH800-5	
S.	b) Umgelæger	tes Subsi	7-rat, GO,	legrend	,	b - 5 cm	
	c) 40 1	d)	e) 4/2	nhit-42		Probengefäß 1) Menge [g]	
	n	g)	h)	i) 🔏			
	a) Lu-L	£3			Spaken	E 1 NBHS05-10	
10	b)				- 64	5-10 cm	
	o) ko1	d)	10 Y R e) 6 14	+)47-h2		Probengefäß	
	Ŋ	g)	h)	i) € 🟂		Menge [g]	
	a) lu L	£ 3			Sparten	E1 845010-15	
15	b) Flechen	(NOYR	•	von - bis [m u GOK]			
15	c) K01	d) <u> </u>	e) 614	*) ho		Probengefäß PE Menge [g]	
	f)	g)	h)	i) 🔼		wienge [g]	
	a) Lu - L-	t3			Spaten	E1 BH5015-20	
0	b)	•				15-20 cks	
50	c) kol	d) <u> </u>	10 YR e) 6/4	*) ho		P Probengefäß	
		g)	h)	i) C 2		Menge [g]	
	a) Lu - Ly	t 3			Spaten	E121506-25	
25	b) Einschl.	17.5YR 4	/4) e	d	2	von - bis [mu. GOK]	
~	c) Ko Z	d)	10 YR e) 6/4	* ho		Probengefäß	
	Ð	g)	h)) C 2		Menge [g]	
	a) La - Lt	53			Spaken	E 1 8H56 5-30	
8	b) Einschi.	(75 YR	4/47		3/11	25-30 CC-	
	c) K07	d)	e) 6/4	, ho		Probengefaß	
			h)	i) C え		Menge [g]	
	aunglas, PE-Plaste, KG-Klargla	as, HS Headspace, B- Be	eutel		2) SV-Schraubvers	chluis, D- Deckel	
Rođen	probenahme						

ProbenNr.	Korngröße	Homogenität	Konsistenz	Farbe Geruch	technogene Beimengungen %	Bemerkungen
BH300-5	0-5cm	99 7.	lest	6xx 4/2	2%	
BH50 15-10	O-Tum	100 %	Je57	10 VR 614	(17.	
	0-2 m	10071	fist	10 YR6/61	CAY.	
	0-2 m	30 %	fost	10 YRG14	CATE	
AH 50 CO-25		90%	feit	10 YR 6/4	c 11.7	
BHS8 25-30	0-7 cm	90%	jest-	ROYR 614	C14.3	
'	nd Transport		 			
Transport dure	ch: NC	C	Labor		Kurier	TNT
Lagerung:	Kül	hlung	Те	mperatur [°C]	lichtgesch	ützt
Labor:	Labor: VKTA				Uhrzeit:	
	lo. PONS		Dachenshm			to mo a lo vift
Datum	1	-	Probenehm	er	Un	terschrift

Anlage 3.2

Auswertung der gammaspektrometrischen Felduntersuchungen

Spektrum#149Datum12.10.2016Ort:Deponie BURGHOF, Boden NO 1

Messzeit: Real Time: 2700,61 Live Time: 2700

Kanal **Impulse** Impulsrate [ips] SD Nuklid Imp/Kanal Peaksumme *) 0 0,000 1 0,00 2 0 0,00 0,000 3 0 0,00 0,000 4 0 0,00 0,000 5 0 0,00 0,000 6 0 0,00 0,000 7 0 0,00 0,000 8 0 0,00 0,000 9 0 0,000 0,00 10 807 0,30 0,011 11 1108 0,41 0,012 12 1264 0,47 0,013 13 0,48 0,013 1295 14 1550 0,57 0,015 15 1491 0,55 0,014 1840 0,68 0,016 16 17 2055 0,76 0,017 18 2243 0,83 0,018 19 2429 0,90 0,018 20 2502 0,93 0,019 3533 21 1,31 0,022 22 1,28 0,022 3453 23 4147 1,54 0.024 24 0,025 4648 1,72 25 5486 2,03 0,027 26 6108 2,26 0,029 27 6714 2,49 0.030 28 7290 2,70 0,032 29 8258 3,06 0,034 30 9230 3,42 0,036 31 10044 3,72 0,037 32 9979 3,70 0,037 33 4,06 0,039 10969 34 4,10 0,039 11072 35 10878 4,03 0,039 36 0,040 11507 4,26 37 4,19 0,039 11314 38 4,03 0,039 10873 39 11167 4,13 0,039 40 3,75 0,037 10121 41 11044 4,09 0,039 42 10563 3,91 0,038 43 10290 3,81 0,038 44 3,69 0,037 9958 45 10169 3,77 0,037 46 10177 3,77 0,037 47 9160 3,39 0,035 48 9482 3,51 0,036 49 8570 3,17 0,034

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #149 Datum 12.10.2016

Ort: Deponie BURGHOF, Boden NO_1

Kanal	Impulse	Δ	Impulsrate [ips] SD	Nuklid	Imp/Kanal	Peaksumme *)
Ranai	50	8699	3,22	0,035	iiip/itailai	, canoamino
	51	8180	3,03	0,033		
	52	7650	2,83	0,032		
	53	7876	2,92	0,033		
	54	7460	2,76	0,032		
	55	7569	2,80	0,032		
	56	7041	2,61	0,031		
	57	6974	2,58	0,031		
	58	6371	2,36	0,030		
	59	6360	2,36	0,030		
	60	6178	2,29	0,029		
	61	6233	2,31	0,029		
	62	5774	2,14	0,028		
	63	6168	2,28	0,029		
	64	6153	2,28	0,029		
	65	5634	2,09	0,028		
	66	5161	1,91	0,027		
	67	4524	1,68	0,025		
	68	4252	1,57	0,024		
	69	4057	1,50	0,024		
	70	3822	1,42	0,023		
	71	3988	1,48	0,023		
	72	3704	1,37	0,023		
	73	3434	1,27	0,022		
	74	3234	1,20	0,021		
	75	3113	1,15	0,021		
	76	2926	1,08	0,020		
	77	2909	1,08	0,020		
	78	3103	1,15	0,021		
	79	2886	1,07	0,020		
	80	2786	1,03	0,020		
	81	2615	0,97	0,019		
	82	2325	0,86	0,018		
	83	2051	0,76	0,017		
	84	1910	0,71	0,016		
	85	1934	0,72	0,016		
	86	1867	0,69	0,016		
	87	1793	0,66	0,016		
	88	1724	0,64	0,015		
	89 90	1689 1654	0,63	0,015		
	91	1536	0,61 0,57	0,015 0,015		
	92	1607		0,015		
	93	1591	0,59	0,015		
	94	1456	0,54	0,014		
	95	1505	0,56	0,014		
	96	1446	0,54	0,014		
	97	1488	0,55	0,014		
	98	1425	0,53	0,014		
		20	0,00	-,		

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #149 Datum 12.10.2016

Ort: Deponie BURGHOF, Boden NO_1

Kanal	lmanulaa	lmanulavata (in al	CD	Ni. delial	lman /l/amal	Dooksumme *\
Kanal	Impulse 99 1437	Impulsrate [ips] 0,53		Nuklid	Imp/Kanal	Peaksumme *)
	00 1348					
	01 1262					
	02 1257					
	03 1289					
	04 1394					
	05 1486					
	06 1554					
	07 1469					
	08 1463					
	09 1330					
	10 1160					
	11 1065					
	12 979				0,00	
	13 958	· · · · · · · · · · · · · · · · · · ·		Cs-137	0,00	
	14 945		· · · · · · · · · · · · · · · · · · ·		-0,01	5,5 .
	15 825				0,01	
	16 829	· · · · · · · · · · · · · · · · · · ·				
	17 889					
	18 856					
	19 883					
	20 854					
	21 808	•				
	22 755	· · · · · · · · · · · · · · · · · · ·				
	23 830					
	24 767					
	25 781	· · · · · · · · · · · · · · · · · · ·				
1	26 730	0,27	0,010			
1	27 727	7 0,27	0,010			
1	28 727	7 0,27	0,010			
1	29 700	0,26	0,010			
1	30 716	0,27	0,010			
1	31 741	0,27	0,010			
1	32 766	0,28	0,010			
1	33 872	0,32	0,011			
1	34 812	0,30	0,011			
1	35 805	0,30	0,011			
1	36 839	0,31	0,011			
1	37 847	7 0,31	0,011			
1	38 793	0,29	0,010			
	39 789	•				
	40 671					
	41 614					
	42 603					
	43 625					
	44 580	· · · · · · · · · · · · · · · · · · ·				
	45 611					
	46 632					
1	47 701	0,26	0,010			

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum#149Datum12.10.2016Ort:Deponie BURGHOF, Boden NO_1

Kanal	Impulse	Impulsrate	[ips] SD		Nuklid	Imp/Kanal	Peaksumme *)
	148	634	0,23	0,009			
	149	706	0,26	0,010			
	150	691	0,26	0,010			
	151	691	0,26	0,010			
	152	649	0,24	0,009			
	153	632	0,23	0,009			
	154	575	0,21	0,009			
	155	548	0,20	0,009			
	156	464	0,17	0,008			
	157	440	0,16	0,008			
	158	366	0,14	0,007			
	159	357	0,13	0,007			
	160	292	0,11	0,006			
	161	259	0,10	0,006			
	162	271	0,10	0,006		0,00	
	163	254	0,09		Co-60	-0,01	-0,03
	164	240	0,09	0,006		-0,02	
	165	264	0,10	0,006			
	166	312	0,12	0,007			
	167	456	0,17	0,008			
	168	761	0,28	0,010		0,17	
	169	1182	0,44	0,013		0,33	
	170	1677	0,62	0,015		0,51	
	171	1725	0,64	0,015	K-40	0,53	0,96
	172	1397	0,52	0,014		0,41	
	173	895	0,33	0,011		0,22	
	174	462	0,17	0,008		0,06	
	175	245	0,09	0,006			
	176	187	0,07	0,005			
	177	163	0,06	0,005			
	178	171	0,06	0,005			
	179	169	0,06	0,005			
	180	149	0,06	0,005			
	181	162	0,06	0,005			
	182	109	0,04	0,004			
	183	106	0,04	0,004			
	184	136	0,05	0,004			
	185	108	0,04	0,004			
	186	159	0,06	0,005		0,02	
	187	159	0,06	0,005		0,02	
	188	158	0,06	-	Bi-214	0,02	
	189	159	0,06	0,005		0,02	
	190	145	0,05	0,004		0,01	
	191	125	0,05	0,004		0,01	
	192	96	0,04	0,004		0,00	
	193	90	0,03	0,004			
	194	94	0,03	0,004			
	195	77	0,03	0,003			
	196	87	0,03	0,003			

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #149 Datum 12.10.2016

Ort: Deponie BURGHOF, Boden NO_1

Kanal	Impulse	Impulsrate	linel SD	Nuklid	Imp/Kanal	Peaksumme *)
	197	79	0,03	0,003	p/rtariai	, cancamino
	198	90	0,03	0,004		
	199	91	0,03	0,004		
	200	69	0,03	0,003		
	201	63	0,02	0,003		
	202	59	0,02	0,003		
	203	77	0,03	0,003		
	204	90	0,03	0,004		
	205	117	0,04	0,004		
	206	108	0,04	0,004		
	207	128	0,05	0,004		
	208	128	0,05	0,004		
	209	103	0,04	0,004		
	210	116	0,04	0,004		
	211	123	0,05	0,004		
	212	91	0,03	0,004		
	213	76	0,03	0,003		
	214	80	0,03	0,003		
	215	90	0,03	0,004		
	216	98	0,04	0,004		
	217	92	0,03	0,004		
	218	74	0,03	0,003		
	219	52	0,02	0,003		
	220	55	0,02	0,003		
	221	37	0,01	0,002		
	222	37	0,01	0,002		
	223	30	0,01	0,002		
	224	30	0,01	0,002		
	225	25	0,01	0,002		
	226	30	0,01	0,002		
	227	54	0,02	0,003	0.00	
	228	92	0,03	0,004	0,02	
	229	142	0,05	0,004	0,04	
	230	170	0,06	0,005	0,05	
	231	151 138	0,06	0,005 0,004	0,05 0,04	
	232 233	83	0,05 0,03	0,004 0,003 TI-208	0,04	
	234	49	0,03	0,003	0,02	
	235	15	0,02	0,003	0,01	
	236	12	0,00	0,001		
	237	11	0,00	0,001		
	238	6	0,00	0,001		
	239	6	0,00	0,001		
	240	6	0,00	0,001		
	241	6	0,00	0,001		
	242	4	0,00	0,001		
	243	7	0,00	0,001		
	244	6	0,00	0,001		
	245	3	0,00	0,001		

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #149 Datum 12.10.2016

Ort: Deponie BURGHOF, Boden NO_1

Kanal	Impulse	Impulsrate	[ips] SD		Nuklid	Imp/Kanal	Peaksumme *)
24	6	5	0,00	0,001			
24	7	3	0,00	0,001			
24	8	5	0,00	0,001			
24	9	7	0,00	0,001			
25	0	2	0,00	0,001			
25	1	5	0,00	0,001			
25	2	3	0,00	0,001			
25	3	3	0,00	0,001			
25	4	3	0,00	0,001			
25	5	8	0,00	0,001			
25	6	1	0,00	0,000			

Spektrum #150 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 1 (Ablagerungsfläche 1304325)

Kanal	Impulse	ا د	Impulsrate [ips] SD	Nuklid	Imp/Kanal	Peaksumme *)
	1	0	0,00	0,000		, cancamino ,
	2	0	0,00	0,000		
	3	0	0,00	0,000		
	4	0	0,00	0,000		
	5	0	0,00	0,000		
	6	0	0,00	0,000		
	7	0	0,00	0,000		
	8	0	0,00	0,000		
	9	0	0,00	0,000		
	10	403	0,15	0,007		
	11	543	0,20	0,009		
	12	578	0,21	0,009		
	13	654	0,24	0,009		
	14	728	0,27	0,010		
	15	722	0,27	0,010		
	16	902	0,33	0,011		
	17	986	0,37	0,012		
	18	982	0,36	0,012		
	19	1141	0,42	0,013		
	20	1197	0,44	0,013		
	21	1401	0,52	0,014		
	22	1738	0,64	0,015		
	23	1942	0,72	0,016		
	24	2191	0,81	0,017		
	25	2435	0,90	0,018		
	26	2828	1,05	0,020		
	27	2875	1,06	0,020		
	28	3627	1,34	0,022		
	29	3912	1,45	0,023		
	30	4018	1,49	0,023		
	31	4745	1,76	0,026		
	32	4567	1,69	0,025		
	33	5392	2,00	0,027		
	34	5098	1,89	0,026		
	35	5253	1,95	0,027		
	36	5621	2,08	0,028		
	37	5058	1,87	0,026		
	38	5345	1,98	0,027		
	39	5416	2,01	0,027		
	40	5085	1,88	0,026		
	41	5172	1,92	0,027		
	42	5260	1,95	0,027		
	43	5076	1,88	0,026		
	44	4856	1,80	0,026		
	45	4916	1,82	0,026		
	46	4568	1,69	0,025		
	47	4534	1,68	0,025		
	48	4357	1,61	0,024		
	49	4311	1,60	0,024		

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #150 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 1 (Ablagerungsfläche 1304325)

Kanal	Impulse	<u>.</u>	Impulsrate [ips]	SD	Nuklid	Imp/Kanal	Peaksumme *)
	50	4087	1,51	0,024			,
	51	3950	1,46	0,023			
	52	3687	1,37	0,022			
	53	3665	1,36	0,022			
	54	3489	1,29	0,022			
	55	3219	1,19	0,021			
	56	3069	1,14	0,021			
	57	3258	1,21	0,021			
	58	2934	1,09	0,020			
	59	2856	1,06	0,020			
	60	2654	0,98	0,019			
	61	2749	1,02	0,019			
	62	2604	0,96	0,019			
	63	2491	0,92	0,018			
	64	2612	0,97	0,019			
	65	2419	0,90	0,018			
	66	2252	0,83	0,018			
	67	2031	0,75	0,017			
	68	1817	0,67	0,016			
	69	1838	0,68	0,016			
	70	1652	0,61	0,015			
	71	1624	0,60	0,015			
	72	1604	0,59	0,015			
	73	1557	0,58	0,015			
	74	1453	0,54	0,014			
	75	1367	0,51	0,014			
	76	1255	0,46	0,013			
	77	1200	0,44	0,013			
	78	1242	0,46	0,013			
	79	1317	0,49	0,013			
	80	1192	0,44	0,013			
	81	1183	0,44	0,013			
	82	1054	0,39	0,012			
	83	942	0,35	0,011			
	84	840	0,31	0,011			
	85	810	0,30	0,011			
	86	787	0,29	0,010			
	87	775	0,29	0,010			
	88	729	0,27	0,010			
	89	712	0,26	0,010			
	90	728	0,27	0,010			
	91	636	0,24	0,009			
	92	636	0,24	0,009			
	93	639	0,24	0,009			
	94	653	0,24	0,009			
	95	587	0,22	0,009			
	96	608	0,23	0,009			
	97	637	0,24	0,009			
	98	598	0,22	0,009			

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #150 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 1 (Ablagerungsfläche 1304325)

Kanal	Impulse	Impulsrate	[ips] SD		Nuklid	Imp/Kanal	Peaksumme *)
	99	588	0,22	0,009			
	100	568	0,21	0,009			
	101	516	0,19	0,008			
	102	533	0,20	0,009			
	103	526	0,19	0,008			
	104	493	0,18	0,008			
	105	476	0,18	0,008			
	106	601	0,22	0,009			
	107	608	0,23	0,009			
	108	598	0,22	0,009			
	109	626	0,23	0,009			
	110	545	0,20	0,009			
	111	444	0,16	0,008			
	112	439	0,16	0,008		0,01	
	113	416	0,15	0,008	Cs-137	0,00	-0,01
	114	377	0,14	0,007		-0,02	
	115	356	0,13	0,007			
	116	331	0,12	0,007			
	117	390	0,14	0,007			
	118	338	0,13	0,007			
	119	349	0,13	0,007			
	120	329	0,12	0,007			
	121	345	0,13	0,007			
	122	324	0,12	0,007			
	123	394	0,15	0,007			
	124	348	0,13	0,007			
	125	372	0,14	0,007			
	126	339	0,13	0,007			
	127	343	0,13	0,007			
	128	328	0,12	0,007			
	129	337	0,12	0,007			
	130	355	0,13	0,007			
	131	322	0,12	0,007			
	132	382	0,14	0,007			
	133	373	0,14	0,007			
	134	350	0,13	0,007			
	135	333	0,12	0,007			
	136	377	0,14	0,007			
	137	374	0,14	0,007			
	138	378	0,14	0,007			
	139	360	0,13	0,007			
	140	360	0,13	0,007			
	141	329	0,12	0,007			
	142	316	0,12	0,007			
	143	324	0,12	0,007			
	144	331	0,12	0,007			
	145	312	0,12	0,007			
	146	303	0,11	0,006			
	147	335	0,12	0,007			

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #150 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 1 (Ablagerungsfläche 1304325)

Kanal	Impulse	Impulsrate [i	ps] SD	Nuklid	Imp/Kanal	Peaksumme *)
	=	-	_	0,007	•	•
				0,007		
				0,008		
				0,008		
				0,007		
				0,007		
				0,007		
				0,007		
				0,006		
1	57 2			0,006		
1	58 2	20 0	0,08	0,005		
1	59 1	63 0),06	0,005		
1	60 1	74 0),06	0,005		
1	61 1	63 0),06	0,005		
1	62 1	28 0),05	0,004	0,00	
1	63 1	25 0),05	0,004 Co-60	0,00	-0,01
1	64 1	37 0),05	0,004	0,00	
1	65 1	02 0),04	0,004		
1	66 1	00 0),04	0,004		
1	67 1	35 0),05	0,004		
1	68 2	33 0	0,09	0,006	0,03	
1	69 4	.87 C),18	0,008	0,12	
1	70 7	84 0),29	0,010	0,23	
1	71 11	65 0),43	0,013 K-40	0,38	0,29
				0,013	0,37	
				0,011	0,29	
				0,008	0,13	
				0,006		
				0,004		
				0,003		
				0,003		
				0,003		
				0,003		
				0,002		
				0,002		
				0,003		
				0,002		
				0,002		ı
				0,003	0,00	
				0,003	0,01	2.25
				0,003 Bi-214	0,01	0,05
				0,003	0,02	
				0,003	0,01	
				0,003	0,00	
				0,002	0,00	I
				0,002		
				0,002		
				0,002		
1	96	30 0),01	0,002		

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #150 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 1 (Ablagerungsfläche 1304325)

197	Kanal	Impulse	Impulsrate	[ips] SD		Nuklid	Imp/Kanal	Peaksumm	e *)
198		197	-		0,002		-		
199		198			0,002				
200		199	31						
202		200	23		0,002				
203		201	16	0,01	0,001				
204		202	14	0,01	0,001				
205 27 0,01 0,002 206 30 0,01 0,002 207 33 0,01 0,002 208 32 0,01 0,002 210 28 0,01 0,002 211 24 0,01 0,002 212 27 0,01 0,002 213 32 0,01 0,002 214 25 0,01 0,002 215 20 0,01 0,002 216 26 0,01 0,002 217 19 0,01 0,002 218 25 0,01 0,002 219 22 0,01 0,002 219 22 0,01 0,002 221 10 0,00 0,001 222 14 0,01 0,002 221 10 0,00 0,001 222 14 0,01 0,001 223 21 0,01 0,002 224 10 0,00 0,001 <td></td> <td>203</td> <td>18</td> <td>0,01</td> <td>0,002</td> <td></td> <td></td> <td></td> <td></td>		203	18	0,01	0,002				
206		204	21	0,01	0,002				
207 33 0,01 0,002 208 32 0,01 0,002 210 28 0,01 0,002 211 24 0,01 0,002 211 24 0,01 0,002 212 27 0,01 0,002 213 32 0,01 0,002 214 25 0,01 0,002 215 20 0,01 0,002 216 26 0,01 0,002 217 19 0,01 0,002 218 25 0,01 0,002 218 25 0,01 0,002 218 25 0,01 0,002 219 22 0,01 0,002 220 18 0,01 0,002 221 10 0,00 0,001 222 14 0,01 0,001 222 14 0,01 0,001 222 14 0,01 0,001 222 14 0,01 0,001 222 15 0,01 0,002 221 10 0,00 0,001 222 14 0,01 0,001 223 21 0,01 0,001 225 14 0,01 0,001 226 13 0,00 0,001 227 9 0,00 0,001 228 15 0,01 0,002 230 25 0,01 0,002 231 37 0,01 0,002 231 37 0,01 0,002 231 37 0,01 0,002 232 43 0,02 0,002 233 36 0,01 0,002 0,00 233 36 0,01 0,002 0,00 233 36 7 0,01 0,002 0,00 233 36 7 0,01 0,002 235 17 0,01 0,002 236 7 0,00 0,001 237 4 0,00 0,001 238 9 0,00 0,001 239 6 0,00 0,001 240 6 0,00 0,001 241 5 0,00 0,001 242 3 0,00 0,001 242 3 0,00 0,001		205	27	0,01	0,002				
208 32 0,01 0,002 209 29 0,01 0,002 210 28 0,01 0,002 211 24 0,01 0,002 212 27 0,01 0,002 213 32 0,01 0,002 215 20 0,01 0,002 216 26 0,01 0,002 217 19 0,01 0,002 218 25 0,01 0,002 219 22 0,01 0,002 221 10 0,000 0,001 222 18 0,01 0,002 221 10 0,000 0,001 222 14 0,01 0,002 221 10 0,00 0,001 222 14 0,01 0,001 223 21 0,01 0,002 224 10 0,00 0,001 225 14 0,01 0,001 226 13 0,00 0,001 <		206	30	0,01	0,002				
209 29 0,01 0,002 210 28 0,01 0,002 211 24 0,01 0,002 212 27 0,01 0,002 213 32 0,01 0,002 214 25 0,01 0,002 215 20 0,01 0,002 216 26 0,01 0,002 217 19 0,01 0,002 218 25 0,01 0,002 219 22 0,01 0,002 220 18 0,01 0,002 221 10 0,00 0,001 222 14 0,01 0,001 223 21 0,01 0,002 224 10 0,00 0,001 225 14 0,01 0,001 226 13 0,00 0,001 227 9 0,00 0,001 228 15 0,01 0,001 230 25 0,01 0,002 <td></td> <td>207</td> <td>33</td> <td>0,01</td> <td>0,002</td> <td></td> <td></td> <td></td> <td></td>		207	33	0,01	0,002				
210		208	32	0,01	0,002				
211 24 0,01 0,002 212 27 0,01 0,002 213 32 0,01 0,002 214 25 0,01 0,002 215 20 0,01 0,002 216 26 0,01 0,002 217 19 0,01 0,002 218 25 0,01 0,002 219 22 0,01 0,002 220 18 0,01 0,002 221 10 0,00 0,001 222 14 0,01 0,001 223 21 0,01 0,002 224 10 0,00 0,001 225 14 0,01 0,001 227 9 0,00 0,001 228 15 0,01 0,001 229 22 0,01 0,002 231 37 0,01 0,002 233 36 0,01 0,002 233 36 0,01 0,002 <td></td> <td>209</td> <td>29</td> <td>0,01</td> <td>0,002</td> <td></td> <td></td> <td></td> <td></td>		209	29	0,01	0,002				
212 27 0,01 0,002 213 32 0,01 0,002 214 25 0,01 0,002 215 20 0,01 0,002 216 26 0,01 0,002 217 19 0,01 0,002 218 25 0,01 0,002 219 22 0,01 0,002 220 18 0,01 0,002 221 10 0,00 0,001 222 14 0,01 0,001 223 21 0,01 0,002 224 10 0,00 0,001 225 14 0,01 0,001 226 13 0,00 0,001 227 9 0,00 0,001 228 15 0,01 0,001 229 22 0,01 0,002 230 25 0,01 0,002 231 37 0,01 0,002 233 36 0,01 0,002 <td></td> <td>210</td> <td>28</td> <td>0,01</td> <td>0,002</td> <td></td> <td></td> <td></td> <td></td>		210	28	0,01	0,002				
213 32 0,01 0,002 214 25 0,01 0,002 215 20 0,01 0,002 216 26 0,01 0,002 217 19 0,01 0,002 218 25 0,01 0,002 219 22 0,01 0,002 220 18 0,01 0,002 221 10 0,00 0,001 222 14 0,01 0,001 223 21 0,01 0,002 224 10 0,00 0,001 225 14 0,01 0,001 226 13 0,00 0,001 227 9 0,00 0,001 228 15 0,01 0,002 230 25 0,01 0,002 231 37 0,01 0,002 231 37 0,01 0,002 233 36 0,01 0,002 233 36 0,01 0,002 <td></td> <td>211</td> <td>24</td> <td>0,01</td> <td>0,002</td> <td></td> <td></td> <td></td> <td></td>		211	24	0,01	0,002				
214 25 0,01 0,002 215 20 0,01 0,002 216 26 0,01 0,002 217 19 0,01 0,002 218 25 0,01 0,002 219 22 0,01 0,002 220 18 0,01 0,002 221 10 0,00 0,001 222 14 0,01 0,001 223 21 0,01 0,002 224 10 0,00 0,001 225 14 0,01 0,001 226 13 0,00 0,001 227 9 0,00 0,001 229 22 0,01 0,002 230 25 0,01 0,002 231 37 0,01 0,002 231 37 0,01 0,002 233 36 0,01 0,002 233 36 0,01 0,002 235 17 0,01 0,002 <td></td> <td>212</td> <td>27</td> <td>0,01</td> <td>0,002</td> <td></td> <td></td> <td></td> <td></td>		212	27	0,01	0,002				
215		213	32	0,01	0,002				
216 26 0,01 0,002 217 19 0,01 0,002 218 25 0,01 0,002 219 22 0,01 0,002 220 18 0,01 0,002 221 10 0,00 0,001 222 14 0,01 0,001 223 21 0,01 0,002 224 10 0,00 0,001 225 14 0,01 0,001 226 13 0,00 0,001 227 9 0,00 0,001 228 15 0,01 0,001 229 22 0,01 0,002 0,00 230 25 0,01 0,002 0,00 231 37 0,01 0,002 0,01 0,04 232 43 0,02 0,002 0,01 0,04 233 36 0,01 0,002 0,01 0,04 234 22 0,01 0,002 0,01 0,00		214	25	0,01	0,002				
217 19 0,01 0,002 218 25 0,01 0,002 219 22 0,01 0,002 220 18 0,01 0,002 221 10 0,00 0,001 222 14 0,01 0,001 223 21 0,01 0,002 224 10 0,00 0,001 225 14 0,01 0,001 226 13 0,00 0,001 227 9 0,00 0,001 228 15 0,01 0,002 230 25 0,01 0,002 231 37 0,01 0,002 231 37 0,01 0,002 233 36 0,01 0,002 233 36 0,01 0,002 234 22 0,01 0,002 235 17 0,01 0,002 236 7 0,00 0,001 237 4 0,00 0,001		215	20	0,01	0,002				
218 25 0,01 0,002 219 22 0,01 0,002 220 18 0,01 0,002 221 10 0,00 0,001 222 14 0,01 0,001 223 21 0,01 0,002 224 10 0,00 0,001 225 14 0,01 0,001 226 13 0,00 0,001 227 9 0,00 0,001 228 15 0,01 0,001 0,00 230 25 0,01 0,002 0,00 231 37 0,01 0,002 0,01 0,04 232 43 0,02 0,002 0,01 0,04 233 36 0,01 0,002 0,01 0,04 234 22 0,01 0,002 0,01 0,00 235 17 0,01 0,002 0,00 0,00 236 7 0,00 0,001 0,00 0,001		216	26	0,01	0,002				
219 22 0,01 0,002 220 18 0,01 0,002 221 10 0,00 0,001 222 14 0,01 0,001 223 21 0,01 0,002 224 10 0,00 0,001 225 14 0,01 0,001 226 13 0,00 0,001 227 9 0,00 0,001 228 15 0,01 0,002 230 25 0,01 0,002 230 25 0,01 0,002 231 37 0,01 0,002 233 36 0,01 0,002 233 36 0,01 0,002 233 36 0,01 0,002 234 22 0,01 0,002 235 17 0,01 0,002 236 7 0,00 0,001 237 4 0,00 0,001 239 6 0,00 0,001		217	19	0,01	0,002				
220		218	25	0,01	0,002				
221 10 0,00 0,001 222 14 0,01 0,001 223 21 0,01 0,002 224 10 0,00 0,001 225 14 0,01 0,001 226 13 0,00 0,001 227 9 0,00 0,001 228 15 0,01 0,002 230 25 0,01 0,002 231 37 0,01 0,002 231 37 0,01 0,002 231 37 0,01 0,002 232 43 0,02 0,002 233 36 0,01 0,002 233 36 0,01 0,002 234 22 0,01 0,002 235 17 0,01 0,002 236 7 0,00 0,001 237 4 0,00 0,001 238 9 0,00 0,001 239 6 0,00 0,001 239 6 0,00 0,001 240 6 0,00 0,001 241 5 0,00 0,001 242 3 0,00 0,001 243 4 0,00 0,001 244 5 0,00 0,001 244 5 0,00 0,001 245 3 0,00 0,001 246 4 0,00 0,001 247 3 0,00 0,001 248 4 0,00 0,001		219	22	0,01	0,002				
222 14 0,01 0,001 223 21 0,01 0,002 224 10 0,00 0,001 225 14 0,01 0,001 226 13 0,00 0,001 227 9 0,00 0,001 228 15 0,01 0,002 0,00 230 25 0,01 0,002 0,00 231 37 0,01 0,002 0,01 0,04 232 43 0,02 0,002 0,01 0,04 233 36 0,01 0,002 0,01 0,04 234 22 0,01 0,002 0,01 0,00 235 17 0,01 0,002 0,00 0,00 236 7 0,00 0,001 0,00 0,00 237 4 0,00 0,001 0,00 0,00 238 9 0,00 0,001 0,00 0,001 0,00 240 6 0,00 0,001 0,00		220		0,01	0,002				
223 21 0,01 0,002 224 10 0,00 0,001 225 14 0,01 0,001 226 13 0,00 0,001 227 9 0,00 0,001 228 15 0,01 0,002 0,00 230 25 0,01 0,002 0,00 231 37 0,01 0,002 0,01 0,04 232 43 0,02 0,002 0,01 0,04 233 36 0,01 0,002 0,01 0,04 234 22 0,01 0,002 0,00 0,00 235 17 0,01 0,002 0,00 0,00 236 7 0,00 0,001 0,00 0,00 237 4 0,00 0,001 0,00 0,00 238 9 0,00 0,001 0,00 0,00 0,00 240 6 0,00 0,001 0,00 0,00 0,00 0,00 0,00 0,00 <td></td> <td>221</td> <td>10</td> <td>0,00</td> <td>0,001</td> <td></td> <td></td> <td></td> <td></td>		221	10	0,00	0,001				
224 10 0,00 0,001 225 14 0,01 0,001 226 13 0,00 0,001 227 9 0,00 0,001 228 15 0,01 0,002 0,00 230 25 0,01 0,002 0,00 231 37 0,01 0,002 0,01 0,04 232 43 0,02 0,002 0,01 0,04 233 36 0,01 0,002 0,01 0,01 234 22 0,01 0,002 0,00 0,00 235 17 0,01 0,002 0,00 0,00 236 7 0,00 0,001 0,00 0,00 0,00 237 4 0,00 0,001 0,00 0,001 0,00		222	14	0,01	0,001				
225 14 0,01 0,001 226 13 0,00 0,001 227 9 0,00 0,001 228 15 0,01 0,001 0,00 229 22 0,01 0,002 0,00 230 25 0,01 0,002 0,00 231 37 0,01 0,002 0,01 0,04 232 43 0,02 0,002 0,01 0,04 233 36 0,01 0,002 0,01 0,01 234 22 0,01 0,002 0,01 0,00 235 17 0,01 0,002 0,00 0,00 236 7 0,00 0,001 0,00 0,00 237 4 0,00 0,001 0,001 0,00 0,001 239 6 0,00 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,0		223	21	0,01	0,002				
226 13 0,00 0,001 227 9 0,00 0,001 228 15 0,01 0,001 0,00 229 22 0,01 0,002 0,00 230 25 0,01 0,002 0,00 231 37 0,01 0,002 0,01 0,04 232 43 0,02 0,002 0,01 0,04 233 36 0,01 0,002 0,01 0,01 234 22 0,01 0,002 0,01 235 17 0,01 0,002 0,00 236 7 0,00 0,001 0,00 237 4 0,00 0,001 0,001 238 9 0,00 0,001 0,001 240 6 0,00 0,001 0,001 241 5 0,00 0,001 242 3 0,00 0,001 243 4 0,00 0,001			10	0,00	0,001				
227 9 0,00 0,001 228 15 0,01 0,001 0,00 229 22 0,01 0,002 0,00 230 25 0,01 0,002 0,00 231 37 0,01 0,002 0,01 0,04 232 43 0,02 0,002 0,01 0,01 233 36 0,01 0,002 0,01 0,01 234 22 0,01 0,002 0,00 235 17 0,01 0,002 0,00 236 7 0,00 0,001 0,001 237 4 0,00 0,001 0,001 239 6 0,00 0,001 240 6 0,00 0,001 241 5 0,00 0,001 242 3 0,00 0,001 243 4 0,00 0,001									
228 15 0,01 0,001 0,00 229 22 0,01 0,002 0,00 230 25 0,01 0,002 0,00 231 37 0,01 0,002 0,01 0,04 232 43 0,02 0,002 0,01 0,04 233 36 0,01 0,002 0,01 0,01 234 22 0,01 0,002 0,00 235 17 0,01 0,002 0,00 236 7 0,00 0,001 0,00 237 4 0,00 0,001 0,001 239 6 0,00 0,001 240 6 0,00 0,001 241 5 0,00 0,001 242 3 0,00 0,001 243 4 0,00 0,001									
229 22 0,01 0,002 0,00 230 25 0,01 0,002 0,00 231 37 0,01 0,002 0,01 0,04 232 43 0,02 0,002 0,01 0,04 233 36 0,01 0,002 0,01 0,01 0,01 0,01 0,01 0,00 0,01 0,00								_	
230									
231 37 0,01 0,002 0,01 0,04 232 43 0,02 0,002 0,01 0,01 233 36 0,01 0,002 0,01 0,01 234 22 0,01 0,002 0,00 0,00 235 17 0,01 0,002 0,00 0,00 236 7 0,00 0,001									
232 43 0,02 0,002 0,01 233 36 0,01 0,002 TI-208 0,01 234 22 0,01 0,002 0,00 235 17 0,01 0,002 0,00 236 7 0,00 0,001 0,001 237 4 0,00 0,001 0,001 238 9 0,00 0,001 0,001 239 6 0,00 0,001 0,001 240 6 0,00 0,001 0,001 241 5 0,00 0,001 242 3 0,00 0,001 243 4 0,00 0,001									
233 36 0,01 0,002 TI-208 0,01 234 22 0,01 0,002 0,00 235 17 0,01 0,002 236 7 0,00 0,001 237 4 0,00 0,001 238 9 0,00 0,001 239 6 0,00 0,001 240 6 0,00 0,001 241 5 0,00 0,001 242 3 0,00 0,001 243 4 0,00 0,001					-				0,04
234 22 0,01 0,002 0,00 235 17 0,01 0,002 0,001 236 7 0,00 0,001 0,001 237 4 0,00 0,001 238 9 0,00 0,001 239 6 0,00 0,001 240 6 0,00 0,001 241 5 0,00 0,001 242 3 0,00 0,001 243 4 0,00 0,001									
235 17 0,01 0,002 236 7 0,00 0,001 237 4 0,00 0,001 238 9 0,00 0,001 239 6 0,00 0,001 240 6 0,00 0,001 241 5 0,00 0,001 242 3 0,00 0,001 243 4 0,00 0,001						TI-208			
236 7 0,00 0,001 237 4 0,00 0,001 238 9 0,00 0,001 239 6 0,00 0,001 240 6 0,00 0,001 241 5 0,00 0,001 242 3 0,00 0,001 243 4 0,00 0,001							0,0	0	
237 4 0,00 0,001 238 9 0,00 0,001 239 6 0,00 0,001 240 6 0,00 0,001 241 5 0,00 0,001 242 3 0,00 0,001 243 4 0,00 0,001									
238 9 0,00 0,001 239 6 0,00 0,001 240 6 0,00 0,001 241 5 0,00 0,001 242 3 0,00 0,001 243 4 0,00 0,001									
239 6 0,00 0,001 240 6 0,00 0,001 241 5 0,00 0,001 242 3 0,00 0,001 243 4 0,00 0,001									
240 6 0,00 0,001 241 5 0,00 0,001 242 3 0,00 0,001 243 4 0,00 0,001									
241 5 0,00 0,001 242 3 0,00 0,001 243 4 0,00 0,001									
242 3 0,00 0,001 243 4 0,00 0,001									
243 4 0,00 0,001									
244 6 0,00 0,001									
245 5 0,00 0,001		245	5	0,00	0,001				

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #150 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 1 (Ablagerungsfläche 1304325)

Kanal	Impulse	Impulsrate	[ips] SD	Nuklid	Imp/Kanal	Peaksumme *)
2	246	6	0,00	0,001		
2	247	3	0,00	0,001		
2	248	3	0,00	0,001		
2	249	7	0,00	0,001		
2	250	8	0,00	0,001		
2	251	1	0,00	0,000		
2	252	6	0,00	0,001		
2	253	3	0,00	0,001		
2	254	4	0,00	0,001		
2	255	8	0,00	0,001		
2	256	1	0.00	0.000		

Spektrum #151 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 2 (Ablagerungsfläche 1386057)

Kanal	Impulse	Impulsrate [ips]	SD	Nuklid Imp	/Kanal	Peaksumme *)
	1 0		0,000		,	, cancamino
	2 0		0,000			
	3 0		0,000			
	4 0	· ·	0,000			
	5 0		0,000			
	6 0		0,000			
	7 0		0,000			
{			0,000			
Ç			0,000			
10			0,008			
1.			0,010			
12		· ·				
13	864					
14	4 978	0,36				
15	5 998	0,37	0,012			
16	1229	0,46	0,013			
17	7 1383	0,51	0,014			
18			0,013			
19	1649	0,61	0,015			
20	1649	0,61	0,015			
2	1 1940	0,72	0,016			
22	2 2245	0,83	0,018			
23	3 2283	0,85	0,018			
24	4 2784	1,03	0,020			
2	3336	1,24	0,021			
26	3454	1,28	0,022			
27	7 4044	1,50	0,024			
28	3 4425	1,64	0,025			
29	5298	1,96	0,027			
30	5653	2,09	0,028			
3.	1 6229		0,029			
32	2 6056	2,24	0,029			
33	3 7084	2,62	0,031			
34	4 7212	2,67	0,031			
3		2,66	0,031			
36		2,62	0,031			
37						
38						
39			0,032			
40		-	0,031			
4			0,031			
42		2,71	0,032			
43						
44		2,48	0,030			
4			0,030			
46			0,030			
47			0,029			
48			0,029			
49	6029	2,23	0,029			

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #151 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 2 (Ablagerungsfläche 1386057)

Kanal	Impuls	۵	Impulsrate [ips] SD	Nuklid	Imp/Kanal	Peaksumme *)
Kanai	50	5935		0,029	iiip/ixaiiai	reaksumme)
	51	5195		0,027		
	52	5253		0,027		
	53	4993		0,026		
	54	5025		0,026		
	55	4806		0,026		
	56	4690		0,025		
	57	4439		0,025		
	58	4183		0,024		
	59	4130		0,024		
	60	4033		0,024		
	61	3987		0,023		
	62	3816		0,023		
	63	3841	1,42	0,023		
	64	3901	1,44	0,023		
	65	3669	1,36	0,022		
	66	3472	1,29	0,022		
	67	3107	1,15	0,021		
	68	2758	1,02	0,019		
	69	2730	1,01	0,019		
	70	2509	0,93	0,019		
	71	2653	0,98	0,019		
	72	2374	0,88	0,018		
	73	2331	0,86	0,018		
	74	2103		0,017		
	75	2093		0,017		
	76	1855		0,016		
	77	1901	0,70	0,016		
	78	1969		0,016		
	79	1894		0,016		
	80	1874		0,016		
	81	1761	0,65	0,016		
	82	1614		0,015		
	83	1461	0,54	0,014		
	84	1301	0,48	0,013		
	85	1177	,	0,013		
	86	1231	0,46	0,013		
	87	1110		0,012		
	88 89	1022 1073		0,012 0,012		
	90	1073		0,012		
	91	1054		0,012		
	92	1035		0,012		
	93	995		0,012		
	94	961	0,36	0,012		
	95	950		0,011		
	96	918		0,011		
	97	934		0,011		
	98	908		0,011		
		500	5,54	-,		

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #151 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 2 (Ablagerungsfläche 1386057)

Kanal	Impulse	Impulsrate [ips]	SD.	Nuklid	Imp/Kanal	Peaksumme *)
	9 927				imp/italiai	r carsumme j
10						
10						
10						
10						
10						
10						
10		•				
10						
10						
10						
11		· · · · · · · · · · · · · · · · · · ·				
11						
11					-0,01	
11		· ·		Cs-137	-0,02	
11		· · · · · · · · · · · · · · · · · · ·			-0,02	
11					-,-	
11						
11						
11						
11		· · · · · · · · · · · · · · · · · · ·				
12						
12						
12						
12		· · · · · · · · · · · · · · · · · · ·				
12						
12						
12		· ·				
12						
12	8 509					
12	9 450					
13	0 484	0,18	0,008			
13	1 534					
13	2 528	0,20	0,009			
13	3 564	0,21	0,009			
13	4 589	0,22	0,009			
13	5 541	0,20	0,009			
13	6 548	0,20	0,009			
13	7 521	0,19	0,008			
13	8 543	0,20	0,009			
13	9 563	0,21	0,009			
14	0 510	0,19	0,008			
14	1 496	0,18	0,008			
14	2 462	0,17	0,008			
14	3 427	0,16	0,008			
14	4 445	0,16	0,008			
14	5 420	0,16	0,008			
14	6 457	0,17	0,008			
14	7 498	0,18	0,008			

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #151 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 2 (Ablagerungsfläche 1386057)

Kanal	Impulse	Impulsrate	[ips] SD		Nuklid	Imp/Kanal	Peaksumme *)
	148	497	0,18	0,008			
	149	542	0,20	0,009			
	150	541	0,20	0,009			
	151	542	0,20	0,009			
	152	500	0,19	0,008			
	153	495	0,18	0,008			
	154	459	0,17	0,008			
	155	414	0,15	0,008			
	156	389	0,14	0,007			
	157	361	0,13	0,007			
	158	300	0,11	0,006			
	159	234	0,09	0,006			
	160	258	0,10	0,006			
	161	198	0,07	0,005			
	162	180	0,07	0,005		-0,01	
	163	167	0,06	0,005	Co-60	-0,01	-0,03
	164	168	0,06	0,005		-0,01	
	165	176	0,07	0,005			
	166	178	0,07	0,005			
	167	244	0,09	0,006			
	168	377	0,14	0,007		0,07	
	169	768	0,28	0,010		0,21	
	170	1084	0,40	0,012		0,33	
	171	1438	0,53	0,014	K-40	0,46	0,62
	172	1377	0,51	0,014		0,44	
	173	905	0,34	0,011		0,26	
	174	530	0,20	0,009		0,12	
	175	256	0,09	0,006			
	176	123	0,05	0,004			
	177	98	0,04	0,004			
	178	94	0,03	0,004			
	179	100	0,04	0,004			
	180	89	0,03	0,003			
	181	83	0,03	0,003			
	182	61	0,02	0,003			
	183	54	0,02	0,003			
	184	67	0,02	0,003			
	185	59	0,02	0,003			
	186	71	0,03	0,003		0,00	
	187	86	0,03	0,003		0,01	
	188	102	0,04	-	Bi-214	0,02	
	189	100	0,04	0,004		0,02	
	190	104	0,04	0,004		0,02	
	191	66	0,02	0,003		0,00	
	192	62	0,02	0,003		0,00	
	193	50	0,02	0,003			
	194	57	0,02	0,003			
	195	50	0,02	0,003			
	196	47	0,02	0,003			

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #151 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 2 (Ablagerungsfläche 1386057)

197	Kanal	Impulse	Impulsrate	[ips] SD		Nuklid	Imp/Kanal	Peaksumme	*)
199		197	48	0,02	0,003				
200		198	57	0,02	0,003				
201		199	38	0,01	0,002				
202 31 0,01 0,002 203 29 0,01 0,002 204 54 0,02 0,003 205 52 0,02 0,003 207 73 0,03 0,003 208 79 0,03 0,003 209 69 0,03 0,003 210 67 0,02 0,003 211 58 0,02 0,003 211 58 0,02 0,003 212 56 0,02 0,003 213 57 0,02 0,003 214 46 0,02 0,003 215 54 0,02 0,003 216 49 0,02 0,003 217 48 0,02 0,003 218 38 0,01 0,002 219 36 0,01 0,002 220 33 0,01 0,002 221 26 0,01 0,002 222 33 0,01 0,002 222 33 0,01 0,002 222 33 0,01 0,002 222 33 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 229 54 0,02 0,003 231 103 0,04 0,004 0,004 232 85 0,03 0,003 233 58 0,02 0,003 234 28 0,01 0,002 235 19 0,01 0,002 236 11 0,00 0,001 237 4 0,00 0,001 238 6 0,00 0,001 239 11 0,00 0,001 241 3 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 6 0,00 0,001 244 7 0,00 0,001 244 7 0,00 0,001 244 7 0,00 0,001 244 7 0,00 0,001		200	46	0,02	0,003				
203		201	44	0,02	0,002				
204 54 0,02 0,003 205 52 0,02 0,003 206 72 0,03 0,003 207 73 0,03 0,003 208 79 0,03 0,003 210 67 0,02 0,003 211 58 0,02 0,003 211 58 0,02 0,003 212 56 0,02 0,003 213 57 0,02 0,003 214 46 0,02 0,003 215 54 0,02 0,003 216 49 0,02 0,003 217 48 0,02 0,003 218 38 0,01 0,002 219 36 0,01 0,002 220 33 0,01 0,002 221 26 0,01 0,002 222 33 0,01 0,002 222 33 0,01 0,002 222 33 0,01 0,002 222 33 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 228 25 0,01 0,002 229 54 0,02 0,003 231 103 0,04 0,004 232 85 0,03 0,003 233 58 0,02 0,003 234 28 0,01 0,002 235 19 0,01 0,002 236 11 0,00 0,001 237 4 0,00 0,001 238 6 0,00 0,001 237 4 0,00 0,001 238 6 0,00 0,001 237 4 0,00 0,001 238 6 0,00 0,001 237 4 0,00 0,001 238 6 0,00 0,001 237 4 0,00 0,001 238 6 0,00 0,001 237 4 0,00 0,001 238 6 0,00 0,001 239 11 0,00 0,001 241 3 0,00 0,001 241 3 0,00 0,001 242 8 0,01 0,002 243 10 0,00 0,001 244 7 0,00 0,001		202	31	0,01	0,002				
205		203	29	0,01	0,002				
206 72 0,03 0,003 207 73 0,03 0,003 208 79 0,03 0,003 209 69 0,03 0,003 210 67 0,02 0,003 211 58 0,02 0,003 212 56 0,02 0,003 213 57 0,02 0,003 214 46 0,02 0,003 216 49 0,02 0,003 217 48 0,02 0,003 218 38 0,01 0,002 219 36 0,01 0,002 220 33 0,01 0,002 221 26 0,01 0,002 222 33 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 229 54 0,02 0,003 <td></td> <td>204</td> <td>54</td> <td>0,02</td> <td>0,003</td> <td></td> <td></td> <td></td> <td></td>		204	54	0,02	0,003				
207 73 0,03 0,003 208 79 0,03 0,003 210 67 0,02 0,003 211 58 0,02 0,003 212 56 0,02 0,003 213 57 0,02 0,003 214 46 0,02 0,003 215 54 0,02 0,003 216 49 0,02 0,003 217 48 0,02 0,003 218 38 0,01 0,002 219 36 0,01 0,002 220 33 0,01 0,002 221 26 0,01 0,002 221 26 0,01 0,002 222 33 0,01 0,002 223 24 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 229 54 0,02 0,003 231 103 0,04 0,004 233 58 0,02 0,003 233 58 0,02 0,003 233 58 0,02 0,003 234 28 0,01 0,002 235 19 0,01 0,002 236 11 0,000 0,001 237 4 0,00 0,001 237 4 0,00 0,001 237 4 0,00 0,001 237 4 0,00 0,001 237 4 0,00 0,001 237 4 0,00 0,001 238 6 0,00 0,001 241 3 0,00 0,001 241 3 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001		205	52	0,02	0,003				
208		206	72	0,03	0,003				
209 69 0,03 0,003 210 67 0,02 0,003 211 58 0,02 0,003 212 56 0,02 0,003 213 57 0,02 0,003 214 46 0,02 0,003 215 54 0,02 0,003 216 49 0,02 0,003 217 48 0,02 0,003 218 38 0,01 0,002 219 36 0,01 0,002 220 33 0,01 0,002 221 26 0,01 0,002 221 26 0,01 0,002 222 33 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 229 54 0,02 0,003 231 103 0,04 0,004 232 85 0,03 0,003 233 58 0,02 0,003 234 28 0,01 0,002 235 19 0,01 0,002 236 11 0,00 0,001 237 4 0,00 0,001 238 6 0,00 0,001 239 11 0,00 0,001 240 7 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001 244 7 0,00 0,001		207	73	0,03	0,003				
210 67 0,02 0,003 211 58 0,02 0,003 212 56 0,02 0,003 213 57 0,02 0,003 214 46 0,02 0,003 215 54 0,02 0,003 216 49 0,02 0,003 217 48 0,02 0,003 218 38 0,01 0,002 220 33 0,01 0,002 221 26 0,01 0,002 222 33 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 229 54 0,02 0,003 231 103 0,04 0,03 0,01 232 85 0,03 <t< td=""><td></td><td>208</td><td>79</td><td>0,03</td><td>0,003</td><td></td><td></td><td></td><td></td></t<>		208	79	0,03	0,003				
211 58 0,02 0,003 212 56 0,02 0,003 213 57 0,02 0,003 214 46 0,02 0,003 215 54 0,02 0,003 216 49 0,02 0,003 217 48 0,02 0,003 218 38 0,01 0,002 219 36 0,01 0,002 220 33 0,01 0,002 221 26 0,01 0,002 222 33 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 229 54 0,02 0,003 0,01 230 77 0,03 0,003 0,02 231 103 <		209	69	0,03	0,003				
212 56 0,02 0,003 213 57 0,02 0,003 214 46 0,02 0,003 215 54 0,02 0,003 216 49 0,02 0,003 217 48 0,02 0,003 218 38 0,01 0,002 229 33 0,01 0,002 221 26 0,01 0,002 222 33 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 229 54 0,02 0,003 231 103 0,04 0,004 233 58 0,02 0,003 233 58 0,02 0,003 234 28 0,01 0,002 </td <td></td> <td>210</td> <td>67</td> <td>0,02</td> <td>0,003</td> <td></td> <td></td> <td></td> <td></td>		210	67	0,02	0,003				
213		211	58	0,02	0,003				
214 46 0,02 0,003 215 54 0,02 0,003 216 49 0,02 0,003 217 48 0,02 0,003 218 38 0,01 0,002 219 36 0,01 0,002 220 33 0,01 0,002 221 26 0,01 0,002 222 33 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 229 54 0,02 0,003 0,01 230 77 0,03 0,003 0,02 231 103 0,04 0,003 0,02 233 58 0,02 0,003 0,02 233 58 0,02 0,003 0,02		212	56	0,02	0,003				
215 54 0,02 0,003 216 49 0,02 0,003 217 48 0,02 0,003 218 38 0,01 0,002 219 36 0,01 0,002 220 33 0,01 0,002 221 26 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 228 25 0,01 0,002 229 54 0,02 0,003 231 103 0,04 0,003 0,01 232 85 0,03 0,003 0,02 233 58 0,02 0,003 0,02 234 28 0,01 0,002 0,00 235 19 0,01 0,002 0,00		213	57	0,02	0,003				
216 49 0,02 0,003 217 48 0,02 0,003 218 38 0,01 0,002 219 36 0,01 0,002 220 33 0,01 0,002 221 26 0,01 0,002 222 33 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 229 54 0,02 0,003 0,01 230 77 0,03 0,003 0,02 231 103 0,04 0,004 0,03 0,02 233 58 0,02 0,003 0,02 0,02 234 28 0,01 0,002 0,00 0,00 235 19 0,01 0,002 0,00 0,00		214	46	0,02	0,003				
217 48 0,02 0,003 218 38 0,01 0,002 219 36 0,01 0,002 220 33 0,01 0,002 221 26 0,01 0,002 222 33 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 229 54 0,02 0,003 230 77 0,03 0,003 231 103 0,04 0,004 232 85 0,03 0,003 233 58 0,02 0,003 234 28 0,01 0,002 235 19 0,01 0,002 236 11 0,00 0,001 237 4 0,00 0,001 <td></td> <td>215</td> <td>54</td> <td>0,02</td> <td>0,003</td> <td></td> <td></td> <td></td> <td></td>		215	54	0,02	0,003				
218 38 0,01 0,002 219 36 0,01 0,002 220 33 0,01 0,002 221 26 0,01 0,002 222 33 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 229 54 0,02 0,003 0,01 230 77 0,03 0,003 0,02 231 103 0,04 0,004 0,03 0,01 232 85 0,03 0,003 0,02 233 58 0,02 0,003 11-208 0,01 234 28 0,01 0,002 0,00 0,00 235 19 0,01 0,002 0,00 0,00 236 11 0,00		216	49	0,02	0,003				
219 36 0,01 0,002 220 33 0,01 0,002 221 26 0,01 0,002 222 33 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 230 77 0,03 0,003 231 103 0,04 0,004 231 103 0,04 0,004 232 85 0,03 0,003 233 58 0,02 0,003 234 28 0,01 0,002 235 19 0,01 0,002 236 11 0,00 0,001 237 4 0,00 0,001 239 11 0,00 0,001 240 7 0,00 0,001 <td></td> <td>217</td> <td>48</td> <td>0,02</td> <td>0,003</td> <td></td> <td></td> <td></td> <td></td>		217	48	0,02	0,003				
220 33 0,01 0,002 221 26 0,01 0,002 222 33 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 229 54 0,02 0,003 230 77 0,03 0,003 231 103 0,04 0,004 232 85 0,03 0,003 233 58 0,02 0,003 233 58 0,02 0,003 234 28 0,01 0,002 235 19 0,01 0,002 236 11 0,00 0,001 237 4 0,00 0,001 239 11 0,00 0,001 240 7 0,00 0,001 <td></td> <td>218</td> <td>38</td> <td>0,01</td> <td>0,002</td> <td></td> <td></td> <td></td> <td></td>		218	38	0,01	0,002				
221 26 0,01 0,002 222 33 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 0,00 229 54 0,02 0,003 0,01 230 77 0,03 0,003 0,02 231 103 0,04 0,004 0,03 0,11 232 85 0,03 0,003 0,02 233 58 0,02 0,003 TI-208 0,01 234 28 0,01 0,002 0,00 235 19 0,01 0,002 0,00 236 11 0,00 0,001 239 11 0,00 0,001 240 7 0,00 0,001 241 3 0,00 0,001		219	36	0,01	0,002				
222 33 0,01 0,002 223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 229 54 0,02 0,003 0,01 230 77 0,03 0,003 0,02 231 103 0,04 0,004 0,03 0,02 231 103 0,04 0,004 0,03 0,02 233 58 0,02 0,003 0,02 0,02 233 58 0,02 0,003 0,01 0,02 234 28 0,01 0,002 0,00 0,00 235 19 0,01 0,002 0,00 0,00 236 11 0,00 0,001 0,001 0,00 0,001 240 7 0,00 0,001 0,001 0,001		220	33	0,01	0,002				
223 24 0,01 0,002 224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 0,00 229 54 0,02 0,003 0,01 230 77 0,03 0,003 0,02 231 103 0,04 0,004 0,03 0,11 232 85 0,03 0,003 0,02 233 58 0,02 0,003 TI-208 0,01 234 28 0,01 0,002 0,00 235 19 0,01 0,002 0,00 236 11 0,00 0,001 0,00 238 6 0,00 0,001 0,00 240 7 0,00 0,001 0,00 241 3 0,00 0,001 242 8 0,00 0,001 243		221	26	0,01	0,002				
224 24 0,01 0,002 225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 0,00 229 54 0,02 0,003 0,01 230 77 0,03 0,003 0,02 231 103 0,04 0,004 0,03 0,11 232 85 0,03 0,003 0,02 233 58 0,02 0,003 TI-208 0,01 234 28 0,01 0,002 0,00 235 19 0,01 0,002 0,00 236 11 0,00 0,001 0,00 237 4 0,00 0,001 0,00 239 11 0,00 0,001 240 7 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10		222	33	0,01	0,002				
225 13 0,00 0,001 226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 0,00 229 54 0,02 0,003 0,01 230 77 0,03 0,003 0,02 231 103 0,04 0,004 0,03 0,11 232 85 0,03 0,003 0,02 233 58 0,02 0,003 0,01 234 28 0,01 0,002 0,00 235 19 0,01 0,002 0,00 236 11 0,00 0,001 0,00 237 4 0,00 0,001 0,00 239 11 0,00 0,001 0,00 240 7 0,00 0,001 0,001 241 3 0,00 0,001 0,001 242 8 0,00 0,001 243 10 0,00 0,001		223	24	0,01	0,002				
226 18 0,01 0,002 227 23 0,01 0,002 228 25 0,01 0,002 0,00 229 54 0,02 0,003 0,01 230 77 0,03 0,003 0,02 231 103 0,04 0,004 0,03 0,02 232 85 0,03 0,003 0,02 233 58 0,02 0,003 TI-208 0,01 234 28 0,01 0,002 0,00 235 19 0,01 0,002 0,00 236 11 0,00 0,001 0,001 237 4 0,00 0,001 0,001 239 11 0,00 0,001 240 7 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001		224	24	0,01	0,002				
227 23 0,01 0,002 0,00 228 25 0,01 0,002 0,00 229 54 0,02 0,003 0,01 230 77 0,03 0,003 0,02 231 103 0,04 0,004 0,03 0,02 232 85 0,03 0,003 0,02 233 58 0,02 0,003 TI-208 0,01 234 28 0,01 0,002 0,00 235 19 0,01 0,002 0,00 236 11 0,00 0,001 0,00 237 4 0,00 0,001 0,001 239 11 0,00 0,001 0,001 240 7 0,00 0,001 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001		225	13	0,00	0,001				
228 25 0,01 0,002 0,000 229 54 0,02 0,003 0,01 230 77 0,03 0,003 0,02 231 103 0,04 0,004 0,03 0,01 232 85 0,03 0,003 0,02 233 58 0,02 0,003 TI-208 0,01 234 28 0,01 0,002 0,00 235 19 0,01 0,002 0,00 236 11 0,00 0,001 0,001 239 11 0,00 0,001 0,001 240 7 0,00 0,001 0,001 241 3 0,00 0,001 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001		226	18	0,01	0,002				
229 54 0,02 0,003 0,01 230 77 0,03 0,003 0,02 231 103 0,04 0,004 0,03 0,11 232 85 0,03 0,003 0,02 233 58 0,02 0,003 TI-208 0,01 234 28 0,01 0,002 0,00 235 19 0,01 0,002 0,00 236 11 0,00 0,001 0,001 237 4 0,00 0,001 0,001 239 11 0,00 0,001 240 7 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001		227	23	0,01	0,002			_	
230 77 0,03 0,003 0,02 231 103 0,04 0,004 0,03 0,11 232 85 0,03 0,003 0,02 233 58 0,02 0,003 TI-208 0,01 234 28 0,01 0,002 0,00 235 19 0,01 0,002 0,00 236 11 0,00 0,001 0,001 237 4 0,00 0,001 0,001 238 6 0,00 0,001 240 7 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001		228	25	0,01	0,002		0,00		
231 103 0,04 0,004 0,003 0,01 232 85 0,03 0,003 0,003 233 58 0,02 0,003 TI-208 0,01 234 28 0,01 0,002 235 19 0,01 0,002 236 11 0,00 0,001 237 4 0,00 0,001 238 6 0,00 0,001 239 11 0,00 0,001 240 7 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001		229	54	0,02	0,003		0,01		
232 85 0,03 0,003 0,02 233 58 0,02 0,003 TI-208 0,01 234 28 0,01 0,002 0,00 235 19 0,01 0,002 0,00 236 11 0,00 0,001 0,001 237 4 0,00 0,001 0,001 238 6 0,00 0,001 0,001 239 11 0,00 0,001 0,001 240 7 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001		230	77	0,03	0,003		0,02		
233 58 0,02 0,003 TI-208 0,01 234 28 0,01 0,002 0,00 235 19 0,01 0,002 236 11 0,00 0,001 237 4 0,00 0,001 238 6 0,00 0,001 239 11 0,00 0,001 240 7 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001		231	103	0,04	0,004		0,03		0,11
234 28 0,01 0,002 0,00 235 19 0,01 0,002 0,001 236 11 0,00 0,001 0,001 237 4 0,00 0,001 238 6 0,00 0,001 239 11 0,00 0,001 240 7 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001		232	85	0,03	0,003		0,02		
235 19 0,01 0,002 236 11 0,00 0,001 237 4 0,00 0,001 238 6 0,00 0,001 239 11 0,00 0,001 240 7 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001					0,003	TI-208			
236 11 0,00 0,001 237 4 0,00 0,001 238 6 0,00 0,001 239 11 0,00 0,001 240 7 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001							0,00		
237 4 0,00 0,001 238 6 0,00 0,001 239 11 0,00 0,001 240 7 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001									
238 6 0,00 0,001 239 11 0,00 0,001 240 7 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001			11						
239 11 0,00 0,001 240 7 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001									
240 7 0,00 0,001 241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001									
241 3 0,00 0,001 242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001									
242 8 0,00 0,001 243 10 0,00 0,001 244 7 0,00 0,001									
243 10 0,00 0,001 244 7 0,00 0,001									
244 7 0,00 0,001									
245 3 0,00 0,001									
		245	3	0,00	0,001				

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #151 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 2 (Ablagerungsfläche 1386057)

Kanal	Impulse	Impulsrate	[ips] SD	Nuklid	Imp/Kanal	Peaksumme *)
2	246	8	0,00	0,001		
2	247	5	0,00	0,001		
2	248	5	0,00	0,001		
2	249	6	0,00	0,001		
2	250	4	0,00	0,001		
2	251	1	0,00	0,000		
2	252	3	0,00	0,001		
2	253	6	0,00	0,001		
2	254	2	0,00	0,001		
2	255	5	0,00	0,001		
2	256	1	0.00	0.000		

Spektrum #152 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 3 (Ablagerungsfläche 1383420)

Kanal	Impulse	9	Impulsrate [ips]	SD	Nuklid	Imp/Kanal	Peaksumme *)
	1	0				•	,
	2	0					
	3	0					
	4	0					
	5	0	0,00	0,000			
	6	0	0,00	0,000			
	7	0	0,00	0,000			
	8	0	0,00	0,000			
	9	0	0,00	0,000			
	10	400	0,22	0,011			
	11	526	0,29	0,013			
	12	576	0,32	0,013			
	13	657	0,36	0,014			
	14	802					
	15	739					
	16	847	0,47	0,016			
	17	1039	0,58	0,018			
	18	942	0,52				
	19	1274	0,71	0,020			
	20	1308					
	21	1395	0,77	0,021			
	22	1682					
	23	1740					
	24	2187		0,026			
	25	2512	1,40	0,028			
	26	2660					
	27	3106					
	28	3418					
	29	3936					
	30	4387					
	31	5016	•				
	32	4799	•				
	33	5391	2,99				
	34	5497					
	35	5464					
	36	5402					
	37	5716					
	38	5591	3,11	0,042			
	39	5630					
	40	5382					
	41	5431	3,02				
	42	5338					
	43	5302					
	44	5240		0,040			
	45	5311	2,95				
	46	5003					
	47	4774					
	48	4756					
	49	4606	2,56	0,038			

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #152 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 3 (Ablagerungsfläche 1383420)

Kanal	Impulse	e I	mpulsrate [ips]	SD	Nuklid	Imp/Kanal	Peaksumme *)
	50	4530	2,52	0,037		•	,
	51	4145	2,30	0,036			
	52	4046	2,25	0,035			
	53	4063	2,26	0,035			
	54	3940	2,19	0,035			
	55	3614	2,01	0,033			
	56	3764	2,09	0,034			
	57	3541	1,97	0,033			
	58	3245	1,80	0,032			
	59	3317	1,84	0,032			
	60	3135	1,74	0,031			
	61	3131	1,74	0,031			
	62	3085	1,71	0,031			
	63	3084	1,71	0,031			
	64	3112	1,73	0,031			
	65	2936	1,63	0,030			
	66	2611	1,45	0,028			
	67	2419	1,34	0,027			
	68	2076	1,15	0,025			
	69	2096	1,16	0,025			
	70	2010	1,12	0,025			
	71	2021	1,12	0,025			
	72	1932	1,07	0,024			
	73	1885	1,05	0,024			
	74	1722	0,96	0,023			
	75	1630	0,91	0,022			
	76	1539	0,85	0,022			
	77	1543	0,86	0,022			
	78	1517	0,84	0,022			
	79	1470	0,82	0,021			
	80	1521	0,84	0,022			
	81	1334	0,74	0,020			
	82	1254	0,70	0,020			
	83	1127	0,63	0,019			
	84	1045	0,58	0,018			
	85	975	0,54	0,017			
	86	882	0,49	0,016			
	87	935	0,52	0,017			
	88	832	0,46	0,016			
	89	922	0,51	0,017			
	90	837	0,46	0,016			
	91	866	0,48	0,016			
	92	801	0,44	0,016			
	93	828	0,46	0,016			
	94	748	0,42	0,015			
	95	775	0,43	0,015			
	96	800	0,44	0,016			
	97	792	0,44	0,016			
	98	777	0,43	0,015			

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #152 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 3 (Ablagerungsfläche 1383420)

Kanal	Impulse		Impularata (ina)	en.		Nuklid	Imp/Kanal	Peaksumme *)
	99	794	Impulsrate [ips] 0,44	0,0		NUKIIU	iiip/Kaiiai	reaksullille)
	00	716	0,44	0,0				
	01	635	0,35					
	02	657	0,36	0,0				
	03	617	0,34	0,0				
	04	692	0,38	0,0				
	05	693	0,38					
	06	808	0,45	0,0				
	07	817	0,45	0,0				
	08	778	0,43	0,0				
	09	689	0,38					
	10	620	0,34					
	11	536	0,30	0,0				
	12	484	0,27				-0,02	
	13	480	0,27		_	Cs-137	-0,02	
	14	488	0,27	0,0			-0,01	
	15	429	0,24	0,0			0,01	
	16	464	0,26	0,0				
	17	498	0,28					
	18	492	0,27					
	19	421	0,23	0,0				
	20	463	0,26	0,0				
	21	431	0,24	0,0				
	22	458	0,25	0,0				
	23	463	0,26					
	24	433	0,24	0,0				
	25	421	0,23					
	26	411	0,23					
1	27	435	0,24	0,0	12			
1	28	428	0,24	0,0	11			
1	29	419	0,23	0,0	11			
1	30	442	0,25	0,0	12			
1	31	426	0,24	0,0	11			
1	32	457	0,25	0,0	12			
1	33	454	0,25	0,0	12			
1	34	489	0,27	0,0	12			
1	35	474	0,26	0,0	12			
1	36	452	0,25	0,0	12			
1	37	444	0,25	0,0	12			
1	38	475	0,26	0,0	12			
	39	413	0,23	0,0				
1	40	387	0,21	0,0	11			
	41	388	0,22					
	42	353	0,20	0,0				
	43	365	0,20	0,0				
	44	333	0,18	0,0				
	45	381	0,21	0,0				
	46	376	0,21	0,0				
1	47	437	0,24	0,0	12			

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #152 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 3 (Ablagerungsfläche 1383420)

Kanal	Impulse	Impulsrate	[ips] SD	Nukli	d	Imp/Kanal	Peaksumme *)
	-	403	0,22	0,011		•	ŕ
		460	0,26	0,012			
	150	433	0,24	0,012			
	151	458	0,25	0,012			
	152	413	0,23	0,011			
		392	0,22	0,011			
	154	387	0,21	0,011			
	155	334	0,19	0,010			
	156	310	0,17	0,010			
	157	268	0,15	0,009			
	158	252	0,14	0,009			
	159	200	0,11	0,008			
	160	168	0,09	0,007			
	161	165	0,09	0,007			
	162	141	0,08	0,007		-0,01	
	163	137	0,08	0,007 Co-60	0	-0,01	-0,03
	164	154	0,09	0,007		0,00	
	165	153	0,08	0,007			
	166	154	0,09	0,007			
	167	218	0,12	0,008			
	168	388	0,22	0,011		0,13	
	169	657	0,36	0,014		0,28	
	170	942	0,52	0,017		0,44	
	171 1	204	0,67	0,019 K-40		0,58	1,12
•	172 1	082	0,60	0,018		0,51	
	173	745	0,41	0,015		0,33	
•	174	376	0,21	0,011		0,12	
		167	0,09	0,007			
	176	93	0,05	0,005			
	177	82	0,05	0,005			
	178	63	0,03	0,004			
	179	79	0,04	0,005			
	180	67	0,04	0,005			
	181	60	0,03	0,004			
	182	64	0,04	0,004			
	183	49	0,03	0,004			
	184	47	0,03	0,004			
	185	64	0,04	0,004			
	186	62	0,03	0,004		0,01	
	187	67	0,04	0,005		0,01	
	188	77	0,04	0,005 Bi-21	4	0,02	
	189	79	0,04	0,005		0,02	
	190	64	0,04	0,004		0,01	
	191	56	0,03	0,004		0,00	
	192	44	0,02	0,004		0,00	l
	193	41	0,02	0,004			
	194	45	0,02	0,004			
	195	51	0,03	0,004			
•	196	32	0,02	0,003			

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #152 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 3 (Ablagerungsfläche 1383420)

Kanal	Impulse	Impulsrate	[ips] SD	Nuklid	Imp/Kanal	Peaksumme *)
	197	30	0,02	0,003	•	•
	198	36	0,02	0,003		
	199	35	0,02	0,003		
	200	36	0,02	0,003		
	201	41	0,02	0,004		
	202	41	0,02	0,004		
	203	24	0,01	0,003		
	204	34	0,02	0,003		
	205	49	0,03	0,004		
	206	43	0,02	0,004		
	207	52	0,03	0,004		
	208	73	0,04	0,005		
	209	43	0,02	0,004		
	210	55	0,03	0,004		
	211	53	0,03	0,004		
	212	51	0,03	0,004		
	213	47	0,03	0,004		
	214	46	0,03	0,004		
	215	48	0,03	0,004		
	216	46	0,03	0,004		
	217	26	0,01	0,003		
	218	27	0,01	0,003		
	219	22	0,01	0,003		
	220	24	0,01	0,003		
	221	27	0,01	0,003		
	222	16	0,01	0,002		
	223	24	0,01	0,003		
	224	10	0,01	0,002		
	225	10	0,01	0,002		
	226	13	0,01	0,002		
	227	14	0,01	0,002		
	228	31	0,02	0,003	0,01	
	229	46	0,03	0,004	0,02	
	230	73	0,04	0,005	0,03	
	231	74	0,04	0,005	0,03	
	232	62	0,03	0,004	0,03	3
	233	34	0,02	0,003 TI-208	0,01	
	234	21	0,01	0,003	0,01	
	235	14	0,01	0,002		
	236	5	0,00	0,001		
	237	2	0,00	0,001		
	238	5	0,00	0,001		
	239	6	0,00	0,001		
	240	5	0,00	0,001		
	241	5	0,00	0,001		
	242	5	0,00	0,001		
	243	5	0,00	0,001		
	244	1	0,00	0,001		
	245	5	0,00	0,001		

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #152 Datum 12.10.2016

Ort: Deponie BURGHOF, Abl.-Pkt. 3 (Ablagerungsfläche 1383420)

Kanal	Impulse	Impulsrate	[ips] SD		Nuklid	Imp/Kanal	Peaksumme *)
246	6	5	0,00	0,001			
247	7	4	0,00	0,001			
248	3	2	0,00	0,001			
249	9	3	0,00	0,001			
250)	6	0,00	0,001			
25 ⁻	1	3	0,00	0,001			
252	2	2	0,00	0,001			
253	3	5	0,00	0,001			
254	4	2	0,00	0,001			
25	5	1	0,00	0,001			
256	3	1	0,00	0,001			

Spektrum#153Datum12.10.2016Ort:Deponie BURGHOF, Boden SW

Kanal	Impulse		Impulsrate [ips]	SD	Nuklid	Imp/Kanal	Peaksumme *)
· turiui	1	0	0,00	0,00			, cancamino ,
	2	0	0,00	0,00			
	3	0	0,00	0,00			
	4	0	0,00	0,00			
	5	0	0,00	0,00			
	6	0	0,00	0,00			
	7	0	0,00	0,00			
	8	0	0,00	0,00			
	9	0	0,00	0,00			
	10	604	0,34	0,01	4		
	11	788	0,44	0,01	6		
	12	762	0,42	0,01	5		
	13	935	0,52	0,01	7		
	14	1163	0,65	0,01	9		
	15 ⁻	1029	0,57	0,01	8		
	16	1286	0,71	0,02	.0		
	17	1433	0,80	0,02	:1		
	18	1449	0,80	0,02	:1		
	19	1768	0,98	0,02			
		1862	1,03	0,02			
		2208	1,23	0,02			
		2664	1,48	0,02			
		2602	1,45	0,02			
		3273	1,82	0,03			
		3786	2,10	0,03			
		3934	2,19	0,03			
		4614	2,56	0,03			
		5110	2,84	0,04			
		5885	3,27	0,04			
		6200	3,44	0,04			
		7113	3,95	0,04			
		6928	3,85	0,04			
		8027	4,46	0,05			
		7908	4,39	0,04			
		7839	4,35	0,04			
		7765	4,31	0,04			
		8101	4,50	0,05			
		7848 7076	4,36	0,04			
		7976 7607	4,43 4,23	0,05 0,04			
		7775	4,32	0,04			
		7748	4,32	0,04			
		7692	4,30	0,04			
		7386	4,10	0,04			
		7473	4,15	0,04			
		7064	3,92	0,04			
		6713	3,73	0,04			
		6624	3,68	0,04			
		6472	3,59	0,04			
			-,	-,-			

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #153 Datum 12.10.2016

Ort: Deponie BURGHOF, Boden SW

Kanal	Impulse)	Impulsrate [ips]	SD		Nuklid	Imp/Kanal	Peaksumme *)
	50	6349			0,044		•	,
	51	5838			0,042			
	52	5669			0,042			
	53	5555			0,041			
	54	5452			0,041			
	55	5070			0,040			
	56	5189			0,040			
	57	4885			0,039			
	58	4714			0,038			
	59	4575	2,54		0,038			
	60	4321	2,40		0,037			
	61	4396	2,44		0,037			
	62	4194	2,33		0,036			
	63	4297	2,39		0,036			
	64	4269	2,37		0,036			
	65	3994			0,035			
	66	3667	2,04		0,034			
	67	3296	1,83		0,032			
	68	2876	1,60		0,030			
	69	2882	1,60		0,030			
	70	2606	1,45		0,028			
	71	2740			0,029			
	72	2568			0,028			
	73	2454	•		0,028			
	74	2240			0,026			
	75	2203			0,026			
	76	2084			0,025			
	77	2098			0,025			
	78	2030	•		0,025			
	79	2092			0,025			
	80	1976	•		0,025			
	81	1802	1,00		0,024			
	82	1654			0,023			
	83	1482			0,021			
	84	1481	0,82		0,021			
	85	1470	0,82		0,021			
	86	1329	0,74		0,020			
	87	1305			0,020			
	88	1277	0,71		0,020			
	89	1287	•		0,020			
	90	1212			0,019			
	91	1207			0,019			
	92 93	1158 1055			0,019 0,018			
	94	1105			0,018			
	9 4 95	1063			0,018			
	96	1063	0,59		0,018			
	97	1007			0,018			
	98	1079			0,018			
	30	10/0	0,59		0,010			

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #153 Datum 12.10.2016

Ort: Deponie BURGHOF, Boden SW

Kanal	Impulse	Impulsrate [ips]	SD	Nuklid	Imp/Kanal	Peaksumme *)
	9 1027				iiip/italiai	r cansumme j
10						
10						
10						
10		· ·				
10						
10						
10						
10						
10						
10						
11						
11						
11					-0,01	
11				Cs-137	-0,03	-0,08
11					-0,03	ŕ
11					,	
11						
11						
11						
11						
12						
12						
12	2 619	0,34	0,014			
12	3 608	0,34	0,014			
12	4 618	0,34	0,014			
12	5 605	0,34	0,014			
12	6 601	0,33	0,014			
12	7 544	0,30	0,013			
12	8 518	0,29	0,013			
12	9 584	0,32	0,013			
13	0 546	0,30	0,013			
13	1 606	0,34	0,014			
13						
13	3 623	0,35	0,014			
13						
13		· ·				
13						
13						
13						
13						
14		· ·				
14		· · · · · · · · · · · · · · · · · · ·				
14						
14						
14		-				
14		· · · · · · · · · · · · · · · · · · ·				
14		-				
14	7 538	0,30	0,013			

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #153 Datum 12.10.2016

Ort: Deponie BURGHOF, Boden SW

Kanal	Impulse		Impulsrate [ips]	SD	Nuklid	Imp/Kanal	Peaksumme *)
	48	523	0,29			•	,
	49	567	0,31	0,013			
	50	576	0,32				
	51	555	0,31	0,013			
	52	495	0,27				
	53	523	0,29				
1	54	489	0,27				
1	55	450	0,25				
1	56	384	0,21	0,011			
1	57	357	0,20	0,010)		
1	58	326	0,18	0,010)		
1	59	240	0,13	0,009)		
1	60	259	0,14	0,009)		
1	61	207	0,11	0,008	3		
1	62	180	0,10	0,007	7	-0,03	
1	63	200	0,11	0,008	Co-60	-0,02	-0,07
1	64	179	0,10	0,007	7	-0,03	
1	65	212	0,12	0,008	3		
1	66	241	0,13	0,009	9		
1	67	382	0,21	0,011	I		
1	68	625	0,35	0,014	1	0,22	
1	69	1059	0,59	0,018	3	0,46	
1	70	1453	0,81	0,021	l	0,68	
1	71	1405	0,78	0,021	K-40	0,65	1,55
1	72	1102	0,61	0,018	3	0,49	
1	73	694	0,39	0,015	5	0,26	
1	74	324	0,18	0,010)	0,05	
1	75	169	0,09	0,007	7		
1	76	119	0,07	0,006	6		
	77	106	0,06				
1	78	103	0,06				
	79	113	0,06				
	80	99	0,05				
	81	75	0,04				
	82	66	0,04				
	83	69	0,04				
	84	62	0,03				
	85	86	0,05			0,01	
	86	73	0,04			0,01	
	87	110	0,06			0,03	
	88	87	0,05		Bi-214	0,01	0,10
	89	105	0,06			0,02	
	90	67	0,04			0,00	
	91	64	0,04			0,00	
	92	55	0,03				
	93	54	0,03				
	94	64	0,04				
	95	63	0,03				
1	96	51	0,03	0,004	1		

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #153 Datum 12.10.2016

Ort: Deponie BURGHOF, Boden SW

Kanal	Impulse	Impulsrate	[ips] SD	Nuklid	Imp/Kanal	Peaksumme *)
	197	45	0,02	0,004	•	,
	198	52	0,03	0,004		
	199	52	0,03	0,004		
	200	39	0,02	0,003		
	201	47	0,03	0,004		
	202	44	0,02	0,004		
	203	39	0,02	0,003		
	204	54	0,03	0,004		
	205	55	0,03	0,004		
	206	75	0,04	0,005		
	207	79	0,04	0,005		
	208	68	0,04	0,005		
	209	71	0,04	0,005		
	210	65	0,04	0,004		
	211	78	0,04	0,005		
	212	55	0,03	0,004		
	213	41	0,02	0,004		
	214	66	0,04	0,005		
	215	44	0,02	0,004		
	216	53	0,03	0,004		
	217	47	0,03	0,004		
	218	40	0,02	0,004		
	219	43	0,02	0,004		
	220	24	0,01	0,003		
	221	22	0,01	0,003		
	222	23	0,01	0,003		
	223	21	0,01	0,003		
	224	11	0,01	0,002		
	225	20	0,01	0,002		
	226	20	0,01	0,002		
	227	35	0,02	0,003		
	228	57	0,03	0,004	0,02	
	229	81	0,04	0,005	0,04	
		102	0,06	0,006	0,05	
	231	94	0,05	0,005	0,04	
	232	73	0,04	0,005	0,03	
	233	32	0,02	0,003 TI-208	0,01	
	234	10	0,01	0,002	0,00	
	235	8	0,00	0,002		
	236	2	0,00	0,001		
	237	2	0,00	0,001		
	238	3	0,00	0,001		
	239	3	0,00	0,001		
	240	2	0,00	0,001		
	241	3	0,00	0,001		
	242	0	0,00	0,000		
	243	5	0,00	0,001		
	244	2	0,00	0,001		
	245	4	0,00	0,001		

^{*)} nach Abzug ergiespez. HG und 1,26 Nettoimpulse für die Peak-Summe des internen K-40 Kalibrierstrahlers

Spektrum #153 Datum 12.10.2016

Ort: Deponie BURGHOF, Boden SW

Kanal	Impulse	Impulsrate	[ips] SD	Nuklid	Imp/Kanal	Peaksumme *)
24	6	4	0,00	0,001		
24	7	3	0,00	0,001		
24	8	4	0,00	0,001		
24	9	4	0,00	0,001		
25	0	3	0,00	0,001		
25	1	2	0,00	0,001		
25	2	1	0,00	0,001		
25	3	1	0,00	0,001		
25	4	4	0,00	0,001		
25	5	5	0,00	0,001		
25	6	0	0,00	0,000		

Anlage 4

Prüfberichte Laboruntersuchungen

Anlage 4.1

Prüfbericht 161019-01 vom 02.11.2016, IAF Radioökologie, Feststoffproben

Labor für Radionuklidanalytik | Radiologische Gutachten | Consulting

Wilhelm-Rönsch-Str. 9 Tel.: +49- (0) 3528-48730-0 01454 Radeberg Fax: +49- (0) 3528-48730-22

Durch die DAkkS nach DIN EN ISO 17025 akkreditiertes Prüflaboratorium.

Radionuklidanalyse

Prüfbericht: 161019-01

Auftraggeber: VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V.

Dr. M. Köhler

Bautzner Landstraße 400 (B6)

01328 Dresden

Auftragsdatum: 17.10.2016

Prüfgegenstand: Feststoffproben (Bodenproben)

Projekt: AVL kerntechnische Beratung

Bestell-Nr.: 3.530.054/16

Probenanzahl: 13

Probenahme durch: Auftraggeber (VKTA)

Probenahmedatum: unbekannt

Probenanlieferung: 19.10.2016

Bearbeitungszeitraum: 19.10.2016 - 02.11.2016

Analyseverfahren: Gammaspektrometrie (γ) ,

Trockenrückstand (DIN ISO 11465)

Auswertung: Ermittlung der Messunsicherheiten und Erkennungsgrenzen

nach DIN ISO 11929 (2011) mit $k_{1-\alpha} = 1,645, k_{1-\beta} = 1,645$

Bemerkungen: keine

Freigabe: 02.11.2016

Anzahl der Seiten: 6

Die Akkreditierung gilt nur für den in der Urkunde aufgeführten Akkreditierungsumfang. Die Prüfergebnisse beziehen sich nur auf die Prüfgegenstände. Der Prüfbericht darf nur unverändert weitergegeben werden. Auszüge bedürfen der schriftlichen Erlaubnis der IAF - Radioökologie GmbH.

Labor für Radionuklidanalytik | Radiologische Gutachten | Consulting

Prüfbericht: 161019-01 Durch die DAkkS nach DIN EN ISO 17025 akkreditiertes Prüflaboratorium.

Auftraggeber: VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V.

Dr. M. Köhler

Bautzner Landstraße 400 (B6)

01328 Dresden

Prüfgegenstand: Feststoffproben (Bodenproben)

Bezugsdatum: 02.11.2016

Analysenergebnisse		lfd. Nr.	1	lfd. Nr.	2	lfd. Nr. 3	
Probenbezeichnung		BH so 0-5 cm		BH so 5-10 cm		BH so 10-15 cm	
Prüfparameter	Einheit	Prüfergebnis	U [%]	Prüfergebnis	U [%]	Prüfergebnis	U [%]
U-238-Reihe							
U-238 γ	Bq/kg	53	14	50	18	58	15
Th-230 γ	Bq/kg	57	32	39	40	42	50
Ra-226 γ	Bq/kg	46	16	41	18	47	17
Pb-210 γ	-210 γ Bq/kg		14	57	20	55	18
U-235-Reihe							
U-235 γ	Bq/kg	2,4	14	2,3	18	2,7	15
Ac-227 γ	Bq/kg	< 3,6	-	< 2,8	-	< 3,3	-
Th-232-Reihe							
Ra-228 γ	Bq/kg	58	10	57	10	62	10
Th-228 γ	Bq/kg	59	10	57	10	64	10
Weitere Parameter							
Κ-40	Bq/kg	523	6,2	507	6,1	540	6,1
Co-60 γ	Bq/kg	< 0,24	-	< 0,17	-	< 0,19	-
Cs-137 γ	Bq/kg	15	6,4	6,2	6,8	6,2	7,0
Physikalische Parameter							
Trockenrückstand	%	90,5		91,7		91,2	

Labor für Radionuklidanalytik | Radiologische Gutachten | Consulting

Prüfbericht: 161019-01 Durch die DAkkS nach DIN EN ISO 17025 akkreditiertes Prüflaboratorium.

Auftraggeber: VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V.

Dr. M. Köhler

Bautzner Landstraße 400 (B6)

01328 Dresden

Prüfgegenstand: Feststoffproben (Bodenproben)

Bezugsdatum: 02.11.2016

Analysenergebnisse		lfd. Nr.	4	lfd. Nr.	5	lfd. Nr.	6
Probenbezeichnung		BH so 15-20	0 cm	BH so 20-25 cm		BH so 25-30 cm	
Prüfparameter	Einheit	Prüfergebnis	U [%]	Prüfergebnis	U [%]	Prüfergebnis	U [%]
U-238-Reihe	•		•				
U-238 γ	Bq/kg	54	15	54	13	54	14
Th-230 γ	Bq/kg	56	40	31	60	41	50
Ra-226 γ	Bq/kg	43	18	47	18	47	17
Pb-210 γ	Bq/kg	43	20	43	16	45	15
U-235-Reihe							
U-235 γ	Bq/kg	2,5	15	2,5	13	2,5	14
Ac-227 γ	Bq/kg	< 3,2	-	< 3,5	-	< 3,3	-
Th-232-Reihe							
Ra-228 γ	Bq/kg	59	10	62	10	62	10
Th-228 γ	Bq/kg	59	10	64	10	63	10
Weitere Parameter							
Κ-40 γ	Bq/kg	509	6,1	539	6,1	575	6,1
Co-60 γ	Bq/kg	< 0,21	-	< 0,22	-	< 0,20	-
Cs-137 γ	Bq/kg	0,33	50	0,17	83	< 0,13	-
Physikalische Parameter							
Trockenrückstand	%	92,3	·	92,1		91,3	

Labor für Radionuklidanalytik | Radiologische Gutachten | Consulting

Prüfbericht: 161019-01 Durch die DAkkS nach DIN EN ISO 17025 akkreditiertes Prüflaboratorium.

Auftraggeber: VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V.

Dr. M. Köhler

Bautzner Landstraße 400 (B6)

01328 Dresden

Prüfgegenstand: Feststoffproben (Bodenproben)

Bezugsdatum: 02.11.2016

Analysenergebnisse			lfd. Nr.	7	lfd. Nr.	8	lfd. Nr.	9
Probenbezeichnung			FG so 0-5	cm	FG so 5-10 cm		FG so 10-15 cm	
Prüfparameter		Einheit	Prüfergebnis	U [%]	Prüfergebnis	U [%]	Prüfergebnis	U [%]
U-238-Reihe								
U-238	γ	Bq/kg	50	13	52	12	52	12
Th-230	γ	Bq/kg	61	36	57	34	55	31
Ra-226	γ	Bq/kg	52	14	54	13	50	13
Pb-210	γ	Bq/kg	68	15	55	15	53	14
U-235-Reihe								
U-235	γ	Bq/kg	2,3	13	2,4	12	2,4	12
Ac-227	γ	Bq/kg	< 3,1	-	< 3,3	-	< 3,2	-
Th-232-Reihe								
Ra-228	γ	Bq/kg	55	10	55	10	57	10
Th-228	γ	Bq/kg	57	10	56	10	58	10
Weitere Parameter								
K-40	γ	Bq/kg	551	6,1	552	6,1	585	6,1
Co-60	γ	Bq/kg	< 0,19	-	< 0,16	-	< 0,14	-
Cs-137	γ	Bq/kg	6,3	6,7	6,3	6,6	4,1	6,9
Physikalische Paramete	Physikalische Parameter							
Trockenrückstand		%	85,8		87,2		88,1	·

Labor für Radionuklidanalytik | Radiologische Gutachten | Consulting

Prüfbericht: 161019-01 Durch die DAkkS nach DIN EN ISO 17025 akkreditiertes Prüflaboratorium.

Auftraggeber: VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V.

Dr. M. Köhler

Bautzner Landstraße 400 (B6)

01328 Dresden

Prüfgegenstand: Feststoffproben (Bodenproben)

Bezugsdatum: 02.11.2016

Analysenergebnisse			lfd. Nr.	10	lfd. Nr.	11	lfd. Nr.	12	
Probenbezeichnung			FG so 15-20	o cm	FG so 20-25 cm		FG so 25-30 cm		
Prüfparameter		Einheit	Prüfergebnis	U [%]	Prüfergebnis	U [%]	Prüfergebnis	U [%]	
U-238-Reihe									
U-238	γ	Bq/kg	51	13	54	13	52	12	
Th-230	γ	Bq/kg	52	35	49	37	52	34	
Ra-226	γ	Bq/kg	54	17	52	15	50	14	
Pb-210	γ	Bq/kg	54	15	53	15	52	15	
U-235-Reihe									
U-235	γ	Bq/kg	2,4	13	2,5	13	2,4	12	
Ac-227	γ	Bq/kg	< 4,2	-	< 3,8	-	< 3,5	-	
Th-232-Reihe									
Ra-228	γ	Bq/kg	58	10	56	10	55	10	
Th-228	γ	Bq/kg	59	10	56	10	53	10	
Weitere Parameter									
K-40	γ	Bq/kg	532	6,1	551	6,1	544	6,2	
Co-60	γ	Bq/kg	< 0,21	-	< 0,20	-	< 0,23	-	
Cs-137	γ	Bq/kg	3,5	9,2	6,8	6,7	8,2	6,8	
Physikalische Paramete	er							·	
Trockenrückstand %		%	87,6		87,7		87,7	87,7	

Labor für Radionuklidanalytik | Radiologische Gutachten | Consulting

Durch die DAkkS nach DIN EN ISO 17025

Prüfbericht: 161019-01

Auftraggeber: VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V.

Dr. M. Köhler

Bautzner Landstraße 400 (B6)

01328 Dresden

Prüfgegenstand: Feststoffproben (Bodenproben)

Bezugsdatum: 02.11.2016

Analysenergebnisse	lfd. Nr. 13				
Probenbezeichnung		FG nw OBMP			
		0-30 cm			
Prüfparameter	Einheit	Prüfergebnis	U [%]		
U-238-Reihe					
U-238 γ	Bq/kg	51	14		
Th-230 γ	Bq/kg	62	36		
Ra-226 γ	Bq/kg	52	16		
Pb-210 γ	Bq/kg	51	15		
U-235-Reihe					
U-235 γ	Bq/kg	2,4	14		
Ac-227 γ	Bq/kg	< 3,3	-		
Th-232-Reihe					
Ra-228 γ	Bq/kg	55	10		
Th-228 γ	Bq/kg	55	10		
Weitere Parameter			•		
Κ-40 γ	Bq/kg	678	6,1		
Co-60 γ	Bq/kg	< 0,23	-		
Cs-137 γ	Bq/kg	5,7	7,2		
Physikalische Parameter	•				
Trockenrückstand	%	83,0			

Anlage 4.2

Prüfbericht 2845.1 vom 04.11.2016, VKTA Rossendorf, Sickerwasser- und Drainage-Wasserproben

Prüfbericht	Seite	1 von 7	
Transcricit	Revision	1	
2845.1	vom	14.11.2015	

Anschrift des Labors: VKTA – Strahlenschutz, Analytik & Entsorgung Rossendorf e. V.

Labor für Umwelt- und Radionuklidanalytik

PF 510119, 01314 Dresden

Bautzner Landstraße 400, 01328 Dresden Tel.: 0351 / 260 3489, Fax: 0351 / 260 3190

Auftraggeber: Abfallverwertungsgesellschaft des Landkreises Ludwigsburg mbH

Herrn Tschackert, albrecht.tschackert@avl-lb.de

Hindenburgstraße 30 **71638 Ludwigsburg**

Auftragsnummer: AVL B 24 / 2016 Auftragsdatum: 07.10.2016

Auftragsgegenstand: Feststoffe und Sickerwässer von Deponien

Probenzahl: 11 Wässer, 13 Feststoffe

Probenahme durch: Fa. ncc **Probeneingang:** 14.10.2016

Prüfzeitraum: 14.10.2016 – 04.11.2016

Analysenverfahren:

γ-Nuklide	γ-Spektrometrie						
²³⁴ U, ²³⁵ U, ²³⁸ U	ICP-MS						
Gesamt-α, Gesamt-β	Messung im Gasdurchflussproportionalzählrohr (PC)						
³ H	Flüssigszintillationsspektrometrie (LSC) nach elektrolytischer Anreicherung						
³ H	LSC nach Destillation						

Bemerkungen: Die γ -Spektrometrie der Sickerwässer sowie die Bestimmung des Parameters 3 H

wurde im Niederniveaumesslabor Felsenkeller, Am Eiswurmlager 10, 01189 Dresden

durchgeführt.

Die hier vorliegende Revision 1 ersetzt die Revision 0 vom 04.11.2016. Die γ -

spektrometrischen Ergebnisse der Probe 2845.1/4 wurden korrigiert.

Weitere Bemerkungen: s. hinten

freigegeben:

Name: Dr. M. Köhler Funktion: Abteilungsleiter

Unterschrift:

1) nicht akkreditiertes Verfahren

²⁾ vom Nachauftragnehmer durchgeführt

Die Prüfergebnisse beziehen sich nur auf die Prüfgegenstände.

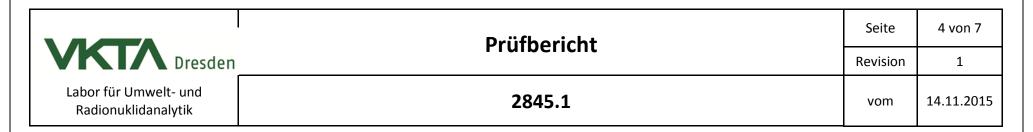
Ohne Genehmigung des Labors darf der Prüfbericht nicht auszugsweise vervielfältigt werden.

Durch die DAkkS nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium.

Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

E. Wats advists/Prosi

	Prüfbericht		2 von 7
VKT Dresden	ransenene	Revision	1
Labor für Umwelt- und Radionuklidanalytik	2845.1	vom	14.11.2015


1 Analysenergebnisse Bodenproben:

Die Analyse der Bodenproben erfolgte entsprechend Angebot durch den akkreditierten Nachauftragnehmer IAF, Radeberg. Ein entsprechender Prüfbericht liegt vor.

	Prüfbericht	Seite	3 von 7
VKTA Dresden		Revision	1
Labor für Umwelt- und Radionuklidanalytik	2845.1	vom	14.11.2015

2 Analysenergebnisse Deponiesickerwässer:

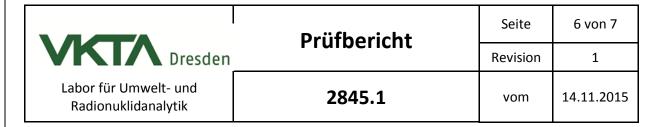
Probe		Gesamt-α	Gesamt-β	²³⁸ U	²³⁴ U	²³⁰ Th	²²⁶ Ra	²¹⁰ Pb	²³⁵ U	²²⁸ Ra	²²⁸ Th	⁴⁰ K	¹³⁷ Cs
		[Bq/l]	[Bq/l]	[Bq/I]	[Bq/l]	[Bq/l]	[Bq/l]	[Bq/l]	[Bq/l]	[Bq/l]	[Bq/l]	[Bq/I]	[Bq/l]
		PC	PC	ICP-MS	ICP-MS	γ	γ	γ	ICP-MS	γ	γ	γ	γ
2845.1/1	Ci	0,37	2,4	0,125	0,145	< 0,61	< 0,074	< 0,091	0,0057	< 0,014	0,0105	1,90	< 0,0025
FG SiWa SF1 13.10.16 NCC	1* s	0,09	0,5	0,007	0,014				0,0003		0,0019	0,19	
	s/c _i	25%	20%	5,5%	10%				5,6%		18%	9,9%	
	g*	0,052	0,080	0,0010	0,010	0,31	0,025	0,045	0,0010	0,0070	0,0020	0,030	0,0013
2845.1/2	Ci	0,43	15	0,144	0,168	< 2,3	< 0,094	< 0,36	0,0067	< 0,042	0,049	14,0	< 0,0095
FG SiWa S15 13.10.16 NCC	1* s	0,13	3	0,008	0,020				0,0004		0,006	1,2	
	s/c _i	29%	20%	5,2%	12%				6,4%		13%	8,5%	
	g*	0,1	0,15	0,0010	0,010	1,1	0,073	0,18	0,0010	0,0208	0,0065	0,075	0,0048
2845.1/3	Ci	0,32	20	0,123	0,14	< 2,3	< 0,15	< 0,35	0,0058	< 0,042	0,037	18,5	0,014
FG SiWa S20 13.10.16 NCC	1* s	0,09	4	0,007	0,02				0,0003		0,005	1,5	0,004
	s/c _i	29%	20%	5,8%	13%				6,0%		14%	8,1%	26%
	g*	0,096	0,21	0,0010	0,010	1,2	0,073	0,18	0,0010	0,021	0,0065	0,078	0,0043
2845.1/4	Ci	0,27	12,0	0,107	0,13	< 2,6	< 0,30	< 0,24	0,0050	< 0,12	0,153	11,1	< 0,043
FG SiWa S22 13.10.16 NCC	1* s	0,08	2,4	0,006	0,02				0,0003		0,015	1,4	
	s/c _i	30%	20%	5,5%	15%				6,0%		10%	10%	
	g*	0,12	0,15	0,0010	0,010	1,3	0,15	0,12	0,0010	0,060	0,011	0,24	0,021

Probe		Gesamt-α	Gesamt-β	²³⁸ U	²³⁴ U	²³⁰ Th	²²⁶ Ra	²¹⁰ Pb	²³⁵ U	²²⁸ Ra	²²⁸ Th	⁴⁰ K	¹³⁷ Cs
		[Bq/l]	[Bq/l]	[Bq/l]	[Bq/l]	[Bq/l]	[Bq/l]	[Bq/l]	[Bq/l]	[Bq/l]	[Bq/l]	[Bq/I]	[Bq/l]
		PC	PC	ICP-MS	ICP-MS	γ	γ	γ	ICP-MS	γ	γ	γ	γ
2845.1/5	Ci	0,65	9,0	0,183	0,21	< 1,6	< 0,078	< 0,25	0,0085	< 0,045	0,036	5,7	< 0,0075
FG SiWa S25 13.10.16 NCC	1* s	0,16	1,8	0,010	0,03				0,0005		0,005	0,6	
	s/c _i	24%	20%	5,7%	12%				6,1%		14%	9,7%	
	g*	0,075	0,10	0,0010	0,010	0,80	0,063	0,12	0,0010	0,023	0,0058	0,088	0,0038
2845.1/6	C _i	0,33	2,0	0,105	0,116	< 1,4	< 0,080	< 0,21	0,0049	< 0,027	0,041	1,59	< 0,0042
FG SiWa S60 13.10.16 NCC	1* s	0,09	0,4	0,005	0,01				0,0003		0,005	0,17	·
	s/c _i	26%	20%	5,2%	8,8%				5,8%		12%	11%	
	g*	0,034	0,080	0,0010	0,010	0,68	0,040	0,10	0,0010	0,013	0,0038	0,025	0,0021
2845.1/7	C _i	< 0,21	26	0,0054	0,0069	< 2,4	< 0,19	< 0,38	0,000241	< 0,058	0,021	20,9	0,043
BHSiWa- S70 12.10.16 NCC	1* s		5	0,0003	0,0014				0,000017		0,007	1,8	0,008
	s/c _i		20%	6,2%	21%				6,9%		31%	8,5%	18%
	g*	0,103	0,24	0,0010	0,010	1,2	0,096	0,19	0,0010	0,029	0,0092	0,16	0,0063
2845.1/8	Ci	0,39	17	0,127	0,160	< 1,9	< 0,12	< 0,31	0,0059	< 0,035	0,031	17,1	< 0,0072
BHSiWa S1/4 12.10.16 NCC	1* s	0,12	3	0,006	0,016				0,0004		0,004	1,4	
***************************************	s/c _i	31%	20%	5,1%	9,8%				6,1%		14%	8,0%	
	g*	0,090	0,25	0,0010	0,010	0,95	0,059	0,15	0,0010	0,017	0,0051	0,062	0,0036
2845.1/9	Ci	0,76	13	0,196	0,235	< 1,4	0,15	< 0,14	0,0090	< 0,051	0,025	7,9	0,13
BHSiWa S76 12.10.16 NCC	1* s	0,19	3	0,010	0,020	-	0,05		0,0005	-	0,004	0,7	0,03
	s/c _i	25%	20%	5,1%	8,3%		34%		5,7%		17%	8,7%	25%
	q*	0,105	0,24	0,0010	0,010	0,69	0,056	0,069	0,0010	0,026	0,0054	0,041	0,0038

\ A CTA	A Prüfbericht		5 von 7
VKT \(\text{Dresden}\)	Transcricit	Revision	1
Labor für Umwelt- und Radionuklidanalytik	2845.1	vom	14.11.2015

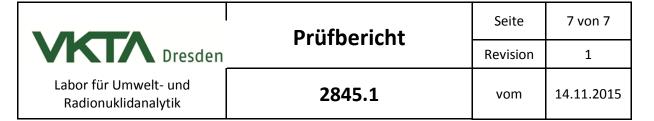
Bemerkungen: Alle Proben wurden mit einem Papierfilter < 7 μm filtriert. Die Volumenreduktion durch Eindampfen wurde abgebrochen, nachdem sich Salzausfällungen bildeten. Die γ -spektrometrischen Messungen wurden Salzausfällungen am Boden des verwendeten Marinellibechers beobachtet.

Legende: c_i Aktivitätskonzentration


s Gesamtunsicherheit

s/c_i relative Gesamtunsicherheit

g* Erkennungsgrenze


Für ein Vertrauensniveau von 90% ist der Vertrauensbereich durch $c_i \pm 1,645$ s gegeben.

Das Bezugsdatum für alle Aktivitätsangaben ist der 28.10.2016 12:00.

3 Analysenergebnisse Deponiesickerwässer, Teil Tritium:

Probe		³H	³ H
		[Bq/l]	[TU]
		LSC nach Destillation	LSC nach Destillation
2845.1/1	С	< 1,7	< 14
FG SiWa SF1 13.10.16 NCC	1* s		
-	s/c		
	g*	0,85	7,2
2845.1/2	С	19,3	163
FG SiWa S15 13.10.16 NCC	1* s	1,4	12
	s/c	7,3%	7,3%
	g*	0,81	6,9
2845.1/3	С	8,2	70
FG SiWa S20 13.10.16 NCC	1* s	0,9	7
	s/c	10%	10%
	g*	0,86	7,3
2845.1/4	С	3,4	29
FG SiWa S22 13.10.16 NCC	1* s	0,7	6
TO GIVE CLE TO TO TO TO	s/c	20%	20%
	g*	0,88	7,4
	9	, 0,00	-,,-
2845.1/5	С	2,6	22
FG SiWa S25 13.10.16 NCC	1* s	0,6	5
	s/c	24%	24%
	g*	0,83	7,1
2845.1/6	С	< 1,7	< 14
FG SiWa S60 13.10.16 NCC	1* s	<u> </u>	
	s/c		
	g*	0,83	7,0
			ŕ
2845.1/7	С	12,5	106
BHSiWa-H3 S70 12.10.16 NCC	1* s	1,1	9
e	s/c	8,5%	8,5%
	g*	0,85	7,2
2845.1/8	С	< 1,8	< 15
BHSiWa-H3 S1/4 12.10.16 NCC	1* s	,-	
	s/c		
	g*	0,88	7,4
2845.1/9	С	2,1	18
BHSiWa-H3 S76 12.10.16 NCC	1* s	0,6	5
	s/c	29%	29%
	g*	0,87	7,4

Legende: c_i Aktivitätskonzentration

s Gesamtunsicherheit

s/c_i relative Gesamtunsicherheit

g* Erkennungsgrenze

Für ein Vertrauensniveau von 90% ist der Vertrauensbereich durch $c_i \pm 1,645 \text{ s}$ gegeben.

Das Bezugsdatum für alle Aktivitätsangaben ist der 28.10.2016 12:00.

4 Analysenergebnisse Grundwässer:

Probe		³ H	³ H
		[Bq/l]	[TU]
		LSC nach elektr. Anr.	LSC nach elektr. Anr.
2845.1/10	С	0,53	4,5
BHTD-H3 T12 12.10.16 NCC	1* s	0,08	0,6
	s/c	14%	14%
	g*	0,067	0,57
2845.1/11	С	0,67	5,7
Hummelbrunnen H1 13.10.16 NCC	1* s	0,09	0,7
	s/c	13%	13%
	g*	0,069	0,59

Legende: c_i Aktivitätskonzentration

s Gesamtunsicherheit

s/c_i relative Gesamtunsicherheit

g* Erkennungsgrenze

Für ein Vertrauensniveau von 90% ist der Vertrauensbereich durch $c_i \pm 1,645$ s gegeben.

Das Bezugsdatum für alle Aktivitätsangaben ist der 28.10.2016.

---- Ende des Prüfberichtes ----